2000 character limit reached
Bilinear Expansions of KP Multipair Correlators in BKP Correlators (2401.06032v5)
Published 11 Jan 2024 in nlin.SI
Abstract: I present a generalization of our joint works with John Harnad (2021) that relates Schur functions, KP tau functions and KP correlation functions to Schur's $Q$-functions, BKP tau functions and BKP correlation functions, respectively.
- F. Balogh, J. Harnad and J. Hurtubise, “Isotropic Grassmannians, Plücker and Cartan maps”, J. Math. Phys. 62, 021701 (2021) arXiv:2007.03586.
- E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP type”, Physica 4D, 343-365 (1982).
- E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations”, In: Nonlinear integrable systems - classical theory and quantum theory, 39-120. World Scientifc (Singapore), eds. M. Jimbo and T. Miwa (1983).
- A. Eskin, A. Okounkov, R. Pandharipande, “The theta characteristic of a branched covering”, Adv. Math. 217 (2008) 873-888
- H. Itoyama, A. Mironov and A. Morozov, “From Kronecker to tableau pseudo-characters in tensor models,” Phys. Lett. B 788 (2019) 766 arXiv:1808.07783
- M. Jimbo and T. Miwa, “Solitons and infinite-dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 943-1001 (1983).
- J. Harnad and F. Balogh, “Tau functions and their applications”, Chapts. 5 and 7 and Appendix D, Monographs on Mathematical Physics, Cambridge University Press (in press, 2020).
- J. Harnad and Eunghyun Lee. “Symmetric polynomials, generalized Jacobi-Trudi identities and τ𝜏\tauitalic_τ-functions”, J. Math. Phys. 59, 091411 (2018).
- J. Harnad and A. Yu. Orlov, “Fermionic approach to bilinear expansions of Schur functions in Schur Q-functions”, Proc. Amer. Math. Soc. 149, 4117-4131 (2021) ; arXiv:2008.13734 (2020).
- J. Harnad and A. Yu. Orlov, “Bilinear expansions of lattices of KP τ𝜏\tauitalic_τ-functions in BKP τ𝜏\tauitalic_τ-functions: a fermionic approach”, Journal of Mathematical Physics 62 (1) (2021); arXiv:22010.05055 (2020).
- J. Harnad and A. Yu. Orlov, “Polynomial KP and BKP τ𝜏\tauitalic_τ-functions and correlators”, Annales Henri Poincaré 22 (9), 3025-3049 (2021); arXiv:2011.13339 (2020)
- V.N. Ivanov, “Interpolation analogues of Schur Q-functions”, Math. Sci. 131, 5495-5507, (2005).
- V. Kac and J. van de Leur. “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, In: The Bispectral Problem, CRM Proceedings and Lecture Notes, Vol. 14, 159-202. American Mathematical Society (1997).
- V. Kac and J. van de Leur,“Polynomial tau-functions of BKP and DKP hierarchies”, J. Math. Phys. 60, 071702 (2019).
- V. G. Kac, N. Rozhkovskaya and J. van de Leur, “Polynomial Tau-functions of the KP, BKP, and the s-Component KP Hierarchies”, arXiv:2005.02665.
- A.D. Mironov, A. Yu. Morozov, S.M. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers”, Eur. Phys. J. C 80 (2020) 97, arXiv:1904.11458
- A. D. Mironov, A. Yu Morozov, S. M. Natanzon, A. Yu Orlov, “Around spin Hurwitz numbers” arxiv:2012.09847 (2020)
- A. Mironov and A. Morozov, “Superintegrability of Kontsevich matrix model”, arXiv:2011.12917
- A. Mironov, A, Morozov and A. Sleptsov, “Genus expansion of HOMFLY polynomials”, Theor. Math. Phys. 177 (2013) 1435; arXiv:1303.1015
- A. Mironov, A. Morozov, S. Natanzon, “Complete Set of Cut-and-Join Operators in Hurwitz-Kontsevich Theory”, Theor.Math.Phys.166 (2011) 1-22, arXiv:0904.4227
- T. Miwa, M. Jimbo and E. Date, “Solitons. Differential equations, symmetries and infinite dimensional algebras” Cambridge Tracts in Mathematics, Cambridge University Press (2000), Chapt. 3, Section 3.3.
- J. J. C. Nimmo, “Hall-Littlewood symmetric functions and the BKP equation”, J. Phys. A, 23, 751-60 (1990).
- A.Okounkov, “Toda equations for Hurwitz numbers”, Math. Res. Lett. 7 (2000) 447–45
- A. Okounkov and R. Pandharipande, “Gromov-Witten theory, Hurwitz theory and completed cycles”, Annals of Math 163 p.517 (2006); arxiv.math.AG/0204305
- A. Okounkov and G. Olshanski, “Shifted Schur Functions”, Algebra i Analiz 9 (2), 73-146 (1997). English transl. St. Petersburg Math. J. 9 (2), 239-300 (1996).
- A. Okounkov and G. Olshanski, Representation theory
- A. Yu. Orlov, “Notes on KP/BKP correspondence”, arXiv:2104.05790, Theor Math Phys September 2021 (in Russian: 2008 N3 September 2021
- A. Yu. Orlov, “Tau Functions and Matrix Integrals”, arXiv:math-ph/0210012
- M. Sato. “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold” , Kokyuroku, RIMS 30-46, (1981).
- T. Takebe, LMP (1989)
- Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, in: Infinite-Dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys. 7 , World Sci. Publ., Teaneck, NJ (1989).