Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear Expansions of KP Multipair Correlators in BKP Correlators (2401.06032v5)

Published 11 Jan 2024 in nlin.SI

Abstract: I present a generalization of our joint works with John Harnad (2021) that relates Schur functions, KP tau functions and KP correlation functions to Schur's $Q$-functions, BKP tau functions and BKP correlation functions, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. F. Balogh, J. Harnad and J. Hurtubise, “Isotropic Grassmannians, Plücker and Cartan maps”, J. Math. Phys. 62, 021701 (2021) arXiv:2007.03586.
  2. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP type”, Physica 4D, 343-365 (1982).
  3. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations”, In: Nonlinear integrable systems - classical theory and quantum theory, 39-120. World Scientifc (Singapore), eds. M. Jimbo and T. Miwa (1983).
  4. A. Eskin, A. Okounkov, R. Pandharipande, “The theta characteristic of a branched covering”, Adv. Math. 217 (2008) 873-888
  5. H. Itoyama, A. Mironov and A. Morozov, “From Kronecker to tableau pseudo-characters in tensor models,” Phys. Lett. B 788 (2019) 766 arXiv:1808.07783
  6. M. Jimbo and T. Miwa, “Solitons and infinite-dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 943-1001 (1983).
  7. J. Harnad and F. Balogh, “Tau functions and their applications”, Chapts. 5 and 7 and Appendix D, Monographs on Mathematical Physics, Cambridge University Press (in press, 2020).
  8. J. Harnad and Eunghyun Lee. “Symmetric polynomials, generalized Jacobi-Trudi identities and τ𝜏\tauitalic_τ-functions”, J. Math. Phys. 59, 091411 (2018).
  9. J. Harnad and A. Yu. Orlov, “Fermionic approach to bilinear expansions of Schur functions in Schur Q-functions”, Proc. Amer. Math. Soc. 149, 4117-4131 (2021) ; arXiv:2008.13734 (2020).
  10. J. Harnad and A. Yu. Orlov, “Bilinear expansions of lattices of KP τ𝜏\tauitalic_τ-functions in BKP τ𝜏\tauitalic_τ-functions: a fermionic approach”, Journal of Mathematical Physics 62 (1) (2021); arXiv:22010.05055 (2020).
  11. J. Harnad and A. Yu. Orlov, “Polynomial KP and BKP τ𝜏\tauitalic_τ-functions and correlators”, Annales Henri Poincaré 22 (9), 3025-3049 (2021); arXiv:2011.13339 (2020)
  12. V.N. Ivanov, “Interpolation analogues of Schur Q-functions”, Math. Sci. 131, 5495-5507, (2005).
  13. V. Kac and J. van de Leur. “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, In: The Bispectral Problem, CRM Proceedings and Lecture Notes, Vol. 14, 159-202. American Mathematical Society (1997).
  14. V. Kac and J. van de Leur,“Polynomial tau-functions of BKP and DKP hierarchies”, J. Math. Phys. 60, 071702 (2019).
  15. V. G. Kac, N. Rozhkovskaya and J. van de Leur, “Polynomial Tau-functions of the KP, BKP, and the s-Component KP Hierarchies”, arXiv:2005.02665.
  16. A.D. Mironov, A. Yu. Morozov, S.M. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers”, Eur. Phys. J. C 80 (2020) 97, arXiv:1904.11458
  17. A. D. Mironov, A. Yu Morozov, S. M. Natanzon, A. Yu Orlov, “Around spin Hurwitz numbers” arxiv:2012.09847 (2020)
  18. A. Mironov and A. Morozov, “Superintegrability of Kontsevich matrix model”, arXiv:2011.12917
  19. A. Mironov, A, Morozov and A. Sleptsov, “Genus expansion of HOMFLY polynomials”, Theor. Math. Phys. 177 (2013) 1435; arXiv:1303.1015
  20. A. Mironov, A. Morozov, S. Natanzon, “Complete Set of Cut-and-Join Operators in Hurwitz-Kontsevich Theory”, Theor.Math.Phys.166 (2011) 1-22, arXiv:0904.4227
  21. T. Miwa, M. Jimbo and E. Date, “Solitons. Differential equations, symmetries and infinite dimensional algebras” Cambridge Tracts in Mathematics, Cambridge University Press (2000), Chapt. 3, Section 3.3.
  22. J. J. C. Nimmo, “Hall-Littlewood symmetric functions and the BKP equation”, J. Phys. A, 23, 751-60 (1990).
  23. A.Okounkov, “Toda equations for Hurwitz numbers”, Math. Res. Lett. 7 (2000) 447–45
  24. A. Okounkov and R. Pandharipande, “Gromov-Witten theory, Hurwitz theory and completed cycles”, Annals of Math 163 p.517 (2006); arxiv.math.AG/0204305
  25. A. Okounkov and G. Olshanski, “Shifted Schur Functions”, Algebra i Analiz 9 (2), 73-146 (1997). English transl. St. Petersburg Math. J. 9 (2), 239-300 (1996).
  26. A. Okounkov and G. Olshanski, Representation theory
  27. A. Yu. Orlov, “Notes on KP/BKP correspondence”, arXiv:2104.05790, Theor Math Phys September 2021 (in Russian: 2008 N3 September 2021
  28. A. Yu. Orlov, “Tau Functions and Matrix Integrals”, arXiv:math-ph/0210012
  29. M. Sato. “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold” , Kokyuroku, RIMS 30-46, (1981).
  30. T. Takebe, LMP (1989)
  31. Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, in: Infinite-Dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys. 7 , World Sci. Publ., Teaneck, NJ (1989).
Citations (1)

Summary

We haven't generated a summary for this paper yet.