Phase separation in ordered polar active fluids: A new Universality class (2401.05996v1)
Abstract: We show that phase separation in ordered polar active fluids belongs to a new universality class. This describes large collections of self-propelled entities (``flocks"), all spontaneously moving in the same direction, in which attractive interactions (which can be caused by, e.g., autochemotaxis) cause phase separation: the system spontaneously separates into a high density band and a low density band, moving parallel to each other, and to the direction of mean flock motion, at different speeds. The upper critical dimension for this transition is $d_c=5$, in contrast to the well-known $d_c=4$ of equilibrium phase separation. We obtain the large-distance, long-time scaling laws of the velocity and density fluctuations, which are characterized by universal critical correlation length and order parameter exponents $\nu_\perp$, $\nu_\parallel$ and $\beta$ respectively. We calculate these to $\mathcal{O} (\epsilon)$ in a $d=5-\epsilon$ expansion.
- P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
- J. Toner, Phys. Rev. Lett. 108, 088102 (2012a).
- S. Ramaswamy, Annual Review of Condensed Matter Physics 1, 323 (2010).
- J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
- J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
- M. Miller and J. Toner, (a).
- M. Miller and J. Toner, (b).
- J. Toner, Phys. Rev. E 86, 031918 (2012b).
- Note that the “longitudinal” and “tranverse” projection operators Lij⟂(𝐪⟂))L^{\perp}_{ij}({\bf q}_{\perp}))italic_L start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) ) and Pij⟂(𝐪⟂)subscriptsuperscript𝑃perpendicular-to𝑖𝑗subscript𝐪perpendicular-toP^{\perp}_{ij}({\bf q}_{\perp})italic_P start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT )) that we define here are not quite the conventional longitudinal (Lij(𝐪)subscript𝐿𝑖𝑗𝐪L_{ij}({\bf q})italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q )) and transverse (Pij(𝐪)subscript𝑃𝑖𝑗𝐪P_{ij}({\bf q})italic_P start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q )) projection operators. The latter project along and perpendicular to the full wvavector 𝐪𝐪{\bf q}bold_q respectively. Our operators Lij⟂(𝐪⟂)subscriptsuperscript𝐿perpendicular-to𝑖𝑗subscript𝐪perpendicular-toL^{\perp}_{ij}({\bf q}_{\perp})italic_L start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT )) and (P⟂(𝐪⟂))ijP^{\perp}({\bf q}_{\perp}))_{ij}italic_P start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ( bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) ) start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT project first perpendicular to the mean velocity (i.e., perpendicular to x^^𝑥\hat{x}over^ start_ARG italic_x end_ARG, or, equivalently, onto the the ⟂perpendicular-to\perp⟂ subspace), and then perpendicular to 𝐪⟂){\bf q}_{\perp})bold_q start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) within the ⟂perpendicular-to\perp⟂ subspace.
- A. Aharony, Phys. Rev. B 8, 3363 (1973).
- E. Brézin and J. Zinn-Justin, Phys. Rev. B 13, 251 (1976).