Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Analysis of Affine Transformations in Cloud-based MPC: Vulnerability to Side-knowledge (2401.05835v1)

Published 11 Jan 2024 in eess.SY and cs.SY

Abstract: Search for the optimizer in computationally demanding model predictive control (MPC) setups can be facilitated by Cloud as a service provider in cyber-physical systems. This advantage introduces the risk that Cloud can obtain unauthorized access to the privacy-sensitive parameters of the system and cost function. To solve this issue, i.e., preventing Cloud from accessing the parameters while benefiting from Cloud computation, random affine transformations provide an exact yet light weight in computation solution. This research deals with analyzing privacy preserving properties of these transformations when they are adopted for MPC problems. We consider two common strategies for outsourcing the optimization required in MPC problems, namely separate and dense forms, and establish that random affine transformations utilized in these forms are vulnerable to side-knowledge from Cloud. Specifically, we prove that the privacy guarantees of these methods and their extensions for separate form are undermined when a mild side-knowledge about the problem in terms of structure of MPC cost function is available. In addition, while we prove that outsourcing the MPC problem in the dense form inherently leads to some degree of privacy for the system and cost function parameters, we also establish that affine transformations applied to this form are nevertheless prone to be undermined by a Cloud with mild side-knowledge. Numerical simulations confirm our results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.
  2. J. Drgoňa, D. Picard, and L. Helsen, “Cloud-based implementation of white-box model predictive control for a geotabs office building: A field test demonstration,” Journal of Process Control, vol. 88, pp. 63–77, 2020.
  3. P. Stoffel, A. Kümpel, and D. Müller, “Cloud-based optimal control of individual borehole heat exchangers in a geothermal field,” Journal of Thermal Science, vol. 31, no. 5, pp. 1253–1265, 2022.
  4. S. woo Ham, D. Kim, T. Barham, and K. Ramseyer, “The first field application of a low-cost mpc for grid-interactive k-12 schools: Lessons-learned and savings assessment,” Energy and Buildings, vol. 296, p. 113351, 2023.
  5. A. Vick, J. Guhl, and J. Krüger, “Model predictive control as a service—concept and architecture for use in cloud-based robot control,” in 21st International Conference on Methods and Models in Automation and Robotics (MMAR).   IEEE, 2016, pp. 607–612.
  6. Y. Xia, Y. Zhang, L. Dai, Y. Zhan, and Z. Guo, “A brief survey on recent advances in cloud control systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp. 3108–3114, 2022.
  7. C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.
  8. J. Cortés, G. E. Dullerud, S. Han, J. Le Ny, S. Mitra, and G. J. Pappas, “Differential privacy in control and network systems,” in IEEE 55th Conference on Decision and Control (CDC).   IEEE, 2016, pp. 4252–4272.
  9. J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 341–354, 2013.
  10. M. T. Hale and M. Egerstedt, “Cloud-enabled differentially private multiagent optimization with constraints,” IEEE Transactions on Control of Network Systems, vol. 5, no. 4, pp. 1693–1706, 2017.
  11. S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed constrained optimization,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 50–64, 2016.
  12. E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private distributed convex optimization via functional perturbation,” IEEE Transactions on Control of Network Systems, vol. 5, no. 1, pp. 395–408, 2016.
  13. K. Yazdani, A. Jones, K. Leahy, and M. Hale, “Differentially private lq control,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 1061–1068, 2022.
  14. K. H. Degue and J. Le Ny, “Cooperative differentially private lqg control with measurement aggregation,” IEEE Control Systems Letters, vol. 7, pp. 1093–1098, 2022.
  15. M. S. Darup, A. B. Alexandru, D. E. Quevedo, and G. J. Pappas, “Encrypted control for networked systems: An illustrative introduction and current challenges,” IEEE Control Systems Magazine, vol. 41, no. 3, pp. 58–78, 2021.
  16. F. J. Gonzalez-Serrano, A. Amor-Martın, and J. Casamayon-Anton, “State estimation using an extended kalman filter with privacy-protected observed inputs,” in IEEE International Workshop on Information Forensics and Security (WIFS).   IEEE, 2014, pp. 54–59.
  17. K. Kogiso and T. Fujita, “Cyber-security enhancement of networked control systems using homomorphic encryption,” in IEEE 54th Conference on Decision and Control (CDC).   IEEE, 2015, pp. 6836–6843.
  18. Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia, M. Srivastava, and P. Tabuada, “Privacy-aware quadratic optimization using partially homomorphic encryption,” in IEEE 55th Conference on Decision and Control (CDC).   IEEE, 2016, pp. 5053–5058.
  19. A. B. Alexandru, K. Gatsis, Y. Shoukry, S. A. Seshia, P. Tabuada, and G. J. Pappas, “Cloud-based quadratic optimization with partially homomorphic encryption,” IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 2357–2364, 2020.
  20. A. B. Alexandru, A. Tsiamis, and G. J. Pappas, “Towards private data-driven control,” in IEEE 59th Conference on Decision and Control (CDC).   IEEE, 2020, pp. 5449–5456.
  21. Y. Lu and M. Zhu, “Privacy preserving distributed optimization using homomorphic encryption,” Automatica, vol. 96, pp. 314–325, 2018.
  22. M. S. Darup, A. Redder, I. Shames, F. Farokhi, and D. Quevedo, “Towards encrypted mpc for linear constrained systems,” IEEE Control Systems Letters, vol. 2, no. 2, pp. 195–200, 2017.
  23. N. Schlüter and M. S. Darup, “Encrypted explicit mpc based on two-party computation and convex controller decomposition,” in IEEE 59th Conference on Decision and Control (CDC).   IEEE, 2020, pp. 5469–5476.
  24. K. Tjell, N. Schlüter, P. Binfet, and M. S. Darup, “Secure learning-based mpc via garbled circuit,” in IEEE 60th Conference on Decision and Control (CDC).   IEEE, 2021, pp. 4907–4914.
  25. M. J. Atallah, J. R. Rice, and E. E. Spafford, “Secure outsourcing of scientific computations,” in Advances in Computers.   Elsevier, 2002, vol. 54, pp. 215–272.
  26. J. Vaidya, “Privacy-preserving linear programming,” in Proceedings of the 2009 ACM symposium on Applied Computing, 2009, pp. 2002–2007.
  27. O. L. Mangasarian, “Privacy-preserving linear programming,” Optimization Letters, vol. 5, pp. 165–172, 2011.
  28. J. Dreier and F. Kerschbaum, “Practical privacy-preserving multiparty linear programming based on problem transformation,” in IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing.   IEEE, 2011, pp. 916–924.
  29. S. Salinas, C. Luo, W. Liao, and P. Li, “Efficient secure outsourcing of large-scale quadratic programs,” in Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 281–292.
  30. L. Zhou and C. Li, “Outsourcing large-scale quadratic programming to a public cloud,” IEEE Access, vol. 3, pp. 2581–2589, 2015.
  31. Z. Shan, K. Ren, M. Blanton, and C. Wang, “Practical secure computation outsourcing: A survey,” ACM Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–40, 2018.
  32. P. C. Weeraddana, G. Athanasiou, C. Fischione, and J. S. Baras, “Per-se privacy preserving solution methods based on optimization,” in IEEE 52nd conference on decision and control (CDC), 2013, pp. 206–211.
  33. A. Sultangazin and P. Tabuada, “Towards the use of symmetries to ensure privacy in control over the cloud,” in IEEE 57th Conference on Decision and Control (CDC).   IEEE, 2018, pp. 5008–5013.
  34. ——, “Symmetries and privacy in control over the cloud: uncertainty sets and side knowledge,” in IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 7209–7214.
  35. ——, “Symmetries and isomorphisms for privacy in control over the cloud,” IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 538–549, 2020.
  36. K. Zhang, Z. Li, Y. Wang, and N. Li, “Privacy-preserved nonlinear cloud-based model predictive control via affine masking,” arXiv preprint arXiv:2112.10625, 2021.
  37. A. M. Naseri, W. Lucia, and A. Youssef, “A privacy preserving solution for cloud-enabled set-theoretic model predictive control,” in 2022 European Control Conference (ECC).   IEEE, 2022, pp. 894–899.
  38. H. Hayati, C. Murguia, and N. van de Wouw, “Privacy-preserving federated learning via system immersion and random matrix encryption,” in IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 6776–6781.
  39. H. Hayati, N. van de Wouw, and C. Murguia, “Immersion and invariance-based coding for privacy in remote anomaly detection,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 11 191–11 196, 2023.
  40. N. Schlüter, P. Binfet, and M. S. Darup, “Cryptanalysis of random affine transformations for encrypted control,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 11 209–11 216, 2023.
  41. P. Binfet, N. Schlüter, and M. S. Darup, “On the security of randomly transformed quadratic programs for privacy-preserving cloud-based control,” arXiv preprint arXiv:2311.05215, 2023.
  42. A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A secure control framework for resource-limited adversaries,” Automatica, vol. 51, pp. 135–148, 2015.
  43. J. Kim, H. Shim, and K. Han, “Dynamic controller that operates over homomorphically encrypted data for infinite time horizon,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 660–672, 2022.
  44. J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A note on persistency of excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325–329, 2005.
  45. K. H. Johansson, “The quadruple-tank process: A multivariable laboratory process with an adjustable zero,” IEEE Transactions on control systems technology, vol. 8, no. 3, pp. 456–465, 2000.

Summary

We haven't generated a summary for this paper yet.