Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Analytic Gr{ö}bner Bases and Tropical Geometry (2401.05759v1)

Published 11 Jan 2024 in cs.SC, math.AG, and math.NT

Abstract: A universal analytic Gr{\"o}bner basis (UAGB) of an ideal of a Tate algebra is a set containing a local Gr{\"o}bner basis for all suitable convergence radii. In a previous article, the authors proved the existence of finite UAGB's for polynomial ideals, leaving open the question of how to compute them. In this paper, we provide an algorithm computing a UAGB for a given polynomial ideal, by traversing the Gr{\"o}bner fan of the ideal. As an application, it offers a new point of view on algorithms for computing tropical varieties of homogeneous polynomial ideals, which typically rely on lifting the computations to an algebra of power series. Motivated by effective computations in tropical analytic geometry, we also examine local bases for more general convergence conditions, constraining the radii to a convex polyhedron. In this setting, we provide an algorithm to compute local Gr{\"o}bner bases and discuss obstacles towards proving the existence of finite UAGBs. CCS CONCEPTS $\bullet$ Computing methodologies $\rightarrow$ Algebraic algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Log-Barrier Interior Point Methods Are Not Strongly Polynomial SIAM Journal on Applied Algebra and Geometry, 2018, vol 2
  2. Computing Tropical Varieties J. Symb. Comput. 42 (2007), no. 1-2
  3. Buchberger B., Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal), English translation in J. of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41, Number 3-4, Pages 475–511, 2006
  4. Gröbner bases over Tate algebras, in Proceedings: ISSAC 2019, Beijing, China.
  5. Signature-based algorithms for Gröbner bases over Tate algebras, in Proceedings: ISSAC 2020, Kalamata, Greece.
  6. On FGLM Algorithms With Tate Algebras, in Proceedings: ISSAC 2021, Saint-Petersburg, Russia.
  7. On Polynomial Ideals and Overconvergence in Tate Algebras, in Proceedings: ISSAC 2022, Lille, France.
  8. Chan A., Maclagan D., Gröbner bases over fields with valuations, Math. Comp. 88 (2019), 467-483.
  9. Converting bases with the Gröbner walk., J. Symbolic Comp. 6 (1997), 209–217.
  10. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015.
  11. Using Algebraic Geometry. Graduate Texts in Mathematics, Volume 185, Springer Science & Business Media, 2005.
  12. Gritzmann P., Sturmfels B. Minkowski Addition of Polytopes: Computational Complexity and Application to Gröbner Bases. SIAM J. Disc. Math., 1993.
  13. Computing Gröbner fans, Math. Comp. 76 (2007)
  14. Greuel G.-M., Pfister G., A Singular Introduction to Commutative Algebra, Springer-Verlag Berlin Heidelberg 2008.
  15. Jensen, A.N., Gfan, a software system for Gröbner fans and tropical varieties, Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html
  16. Mikhalkin G., Enumerative Tropical Algebraic Geometry In ℝ2superscriptℝ2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, Journal of the American Aathematical Society, Volume 18, Number 2, 2005
  17. Markwig T., Ren Y., Computing Tropical Varieties Over Fields with Valuation, Found Comput Math 20, 783–800 (2020).
  18. Mora T., An Algorithm to Compute the Equations of Tangent Cones, in: Proceedings EUROCAM 82, Lecture Notes in Comput. Sci. (1982).
  19. Mora T., Robbiano L., The Gröbner fan of an ideal, , J. Symbolic Comput. 6 (1988), no. 2-3.
  20. Ostrowski A.M., On Multiplication and Factorization of Polynomials, I. Lexicographical Orderings and Extreme Aggregates of Terms, , Aequationes Mathematicae, Volume 13, 1975.
  21. Rabinoff J., Tropical analytic geometry, Newton polygons, and tropical intersections, Advances in Mathematics 229(6), 2010.
  22. Ren Y., Tropical geometry in Singular, Doctoral dissertation, Technische Universität Kaiserslautern, 2015.
  23. SageMath, the Sage Mathematics Software System (Version 9.2), The Sage Development Team, 2020, http://www.sagemath.orug
  24. Sturmfels B., Gröbner Bases and Convex Polytopes, American Mathematical Society, Univ. Lectures Series, No 8, Providence, Rhode Island, 1996.
  25. Tate J., Rigid analytic spaces, Inventiones Mathematicae 12, 1971, 257–289
  26. Vaccon T., Matrix-F5 Algorithms and Tropical Gröbner Bases Computation, in Proceedings: ISSAC 2015, Bath, UK. Extended version in the J. of Symbolic Computation, 2017.
  27. Vaccon T., Yokoyama K., A Tropical F5 algorithm, in Proceedings: ISSAC 2017, Kaiserslautern, Germany.
  28. On Affine Tropical F5 algorithm, in Proceedings: ISSAC 2018, New York, USA. Extended version in the J. of Symbolic Computation, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.