Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase discovery with active learning: Application to structural phase transitions in equiatomic NiTi (2401.05568v1)

Published 10 Jan 2024 in cond-mat.mtrl-sci, cs.LG, and physics.comp-ph

Abstract: Nickel titanium (NiTi) is a protypical shape-memory alloy used in a range of biomedical and engineering devices, but direct molecular dynamics simulations of the martensitic B19' -> B2 phase transition driving its shape-memory behavior are rare and have relied on classical force fields with limited accuracy. Here, we train four machine-learned force fields for equiatomic NiTi based on the LDA, PBE, PBEsol, and SCAN DFT functionals. The models are trained on the fly during NPT molecular dynamics, with DFT calculations and model updates performed automatically whenever the uncertainty of a local energy prediction exceeds a chosen threshold. The models achieve accuracies of 1-2 meV/atom during training and are shown to closely track DFT predictions of B2 and B19' elastic constants and phonon frequencies. Surprisingly, in large-scale molecular dynamics simulations, only the SCAN model predicts a reversible B19' -> B2 phase transition, with the LDA, PBE, and PBEsol models predicting a reversible transition to a previously uncharacterized low-volume phase, which we hypothesize to be a new stable high-pressure phase. We examine the structure of the new phase and estimate its stability on the temperature-pressure phase diagram. This work establishes an automated active learning protocol for studying displacive transformations, reveals important differences between DFT functionals that can only be detected in large-scale simulations, provides an accurate force field for NiTi, and identifies a new phase.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Jaronie Mohd Jani, Martin Leary, Aleksandar Subic,  and Mark A Gibson, “A review of shape memory alloy research, applications and opportunities,” Materials & Design (1980-2015) 56, 1078–1113 (2014).
  2. J Frenzel, Easo P George, A Dlouhy, Ch Somsen, MF-X Wagner,  and G Eggeler, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Materialia 58, 3444–3458 (2010).
  3. Xiangyang Huang, Claudia Bungaro, Vitaliy Godlevsky,  and Karin M Rabe, “Lattice instabilities of cubic NiTi from first principles,” Physical Review B 65, 014108 (2001).
  4. Xiangyang Huang, Graeme J Ackland,  and Karin M Rabe, “Crystal structures and shape-memory behaviour of NiTi,” Nature materials 2, 307–311 (2003).
  5. David Holec, Martin Friák, Antonín Dlouhỳ,  and Jörg Neugebauer, “Ab initio study of pressure stabilized NiTi allotropes: Pressure-induced transformations and hysteresis loops,” Physical Review B 84, 224119 (2011).
  6. Jifeng Wang and Huseyin Sehitoglu, ‘‘Resolving quandaries surrounding NiTi,” Applied Physics Letters 101, 081907 (2012).
  7. Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al., “Commentary: The materials project: A materials genome approach to accelerating materials innovation,” APL materials 1, 011002 (2013).
  8. Justin B Haskins, Alexander E Thompson,  and John W Lawson, “Ab initio simulations of phase stability and martensitic transitions in NiTi,” Physical Review B 94, 214110 (2016).
  9. D Farkas, D Roqueta, A Vilette,  and K Ternes, “Atomistic simulations in ternary Ni-Ti-al alloys,” Modelling and Simulation in Materials Science and Engineering 4, 359 (1996).
  10. WS Lai and BX Liu, “Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering,” Journal of Physics: Condensed Matter 12, L53 (2000).
  11. H Ishida and Y Hiwatari, “Md simulation of martensitic transformations in TiNi alloys with meam,” Molecular Simulation 33, 459–461 (2007).
  12. Daniel Mutter and Peter Nielaba, “Simulation of structural phase transitions in NiTi,” Physical Review B 82, 224201 (2010).
  13. Ken-ichi Saitoh, Keisuke Kubota,  and Tomohiro Sato, “Atomic-level structural change in Ni-Ti alloys under martensite and amorphous transformations,” Technische Mechanik-European Journal of Engineering Mechanics 30, 269–279 (2010).
  14. Yuan Zhong, Ken Gall,  and Ting Zhu, “Atomistic study of nanotwins in NiTi shape memory alloys,” Journal of Applied Physics 110, 033532 (2011).
  15. Won-Seok Ko, Blazej Grabowski,  and Jörg Neugebauer, “Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition,” Physical Review B 92, 134107 (2015).
  16. Sepideh Kavousi, Brian R Novak, Michael I Baskes, Mohsen Asle Zaeem,  and Dorel Moldovan, “Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification,” Modelling and Simulation in Materials Science and Engineering 28, 015006 (2019).
  17. Jörg Behler and Michele Parrinello, “Generalized neural-network representation of high-dimensional potential-energy surfaces,” Physical review letters 98, 146401 (2007).
  18. Chris M Handley, Glenn I Hawe, Douglas B Kell,  and Paul LA Popelier, “Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning,” Physical Chemistry Chemical Physics 11, 6365–6376 (2009).
  19. Albert P Bartók, Mike C Payne, Risi Kondor,  and Gábor Csányi, “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons,” Physical review letters 104, 136403 (2010).
  20. Aidan P Thompson, Laura P Swiler, Christian R Trott, Stephen M Foiles,  and Garritt J Tucker, “Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials,” Journal of Computational Physics 285, 316–330 (2015).
  21. Mitchell A Wood and Aidan P Thompson, “Extending the accuracy of the snap interatomic potential form,” The Journal of chemical physics 148, 241721 (2018).
  22. Wojciech J Szlachta, Albert P Bartók,  and Gábor Csányi, “Accuracy and transferability of gaussian approximation potential models for tungsten,” Physical Review B 90, 104108 (2014).
  23. Albert P Bartók, James Kermode, Noam Bernstein,  and Gábor Csányi, “Machine learning a general-purpose interatomic potential for silicon,” Physical Review X 8, 041048 (2018).
  24. Volker L Deringer, Miguel A Caro,  and Gábor Csányi, “A general-purpose machine-learning force field for bulk and nanostructured phosphorus,” Nature communications 11, 1–11 (2020).
  25. Hao Tang, Yin Zhang, Qing-Jie Li, Haowei Xu, Yuchi Wang, Yunzhi Wang,  and Ju Li, “High accuracy neural network interatomic potential for NiTi shape memory alloy,” Acta Materialia 238, 118217 (2022).
  26. Jonathan Vandermause, Steven B Torrisi, Simon Batzner, Yu Xie, Lixin Sun, Alexie M Kolpak,  and Boris Kozinsky, “On-the-fly active learning of interpretable bayesian force fields for atomistic rare events,” npj Computational Materials 6, 1–11 (2020).
  27. Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti,  and Boris Kozinsky, “Bayesian force fields from active learning for simulation of inter-dimensional transformation of stanene,” npj Computational Materials 7, 1–10 (2021).
  28. Jonathan Vandermause, Yu Xie, Jin Soo Lim, Cameron J Owen,  and Boris Kozinsky, “Active learning of reactive bayesian force fields: Application to heterogeneous hydrogen-platinum catalysis dynamics,” arXiv preprint arXiv:2106.01949  (2021).
  29. O Kubaschewski, H Villa,  and WA Dench, “The reaction of titanium tetrachloride with hydrogen in contact with various refractories,” Transactions of the Faraday Society 52, 214–222 (1956).
  30. SD Prokoshkin, AV Korotitskiy, Vladimir Brailovski, S Turenne, I Yu Khmelevskaya,  and IB Trubitsyna, “On the lattice parameters of phases in binary Ti–Ni shape memory alloys,” Acta Materialia 52, 4479–4492 (2004).
  31. Guangtao Liu, Hanyu Liu, Xiaolei Feng,  and Simon AT Redfern, “High-pressure phase transitions of nitinol NiTi to a semiconductor with an unusual topological structure,” Physical Review B 97, 140104 (2018).
  32. Ralf Drautz, “Atomic cluster expansion for accurate and transferable interatomic potentials,” Physical Review B 99, 014104 (2019).
  33. Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Christensen, Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus, et al., “The atomic simulation environment — a Python library for working with atoms,” Journal of Physics: Condensed Matter 29, 273002 (2017).
  34. E Goo and R Sinclair, “The b2 to r transformation in Ti50Ni47fe3 and Ti49. 5Ni50. 5 alloys,” Acta Metallurgica 33, 1717–1723 (1985).
  35. Yasuhiro Kudoh, Masayasu Tokonami, S Miyazaki,  and Kazuhiro Otsuka, “Crystal structure of the martensite in Ti-49.2 at.% Ni alloy analyzed by the single crystal x-ray diffraction method,” Acta Metallurgica 33, 2049–2056 (1985).
  36. Pauli Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17, 261–272 (2020).
  37. G. Kresse, “Ab-initio molecular-dynamics for liquid-metals,” J. Non-Cryst. Solids 193, 222–229 (1995).
  38. Atsushi Togo and Isao Tanaka, “First principles phonon calculations in materials science,” Scripta Materialia 108, 1–5 (2015).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets