Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic expansions of truncated hypergeometric series for $1/π$ (2401.05419v2)

Published 29 Dec 2023 in math.NT

Abstract: In this paper, we consider rational hypergeometric series of the form [\frac{p}{\pi}= \sum_{k=0}\infty u_k\quad\text{with}\quad u_k=\frac{\left(\frac{1}{2}\right)k \left(q\right)_k \left(1-q\right)_k}{(k!)3}(r+s\,k)\,tk,] where $(a)_k$ denotes the Pochhammer symbol and $p,q,r,s,t$ are algebraic coefficients. Using only the first $n+1$ terms of this series, we define the remainder [\mathcal{R}_n = \frac{p}{\pi} - \sum{k=0}n u_k=\sum_{k=n+1}\infty u_k.] We consider an asymptotic expansion of $\mathcal{R}n$. More precisely, we provide a recursive relation for determining the coefficients $c_j$ such that [ \mathcal{R}_n = \frac{\left(\frac{1}{2}\right)_n \left(q\right)_n \left(1-q\right)_n}{n!3}ntn\left(\sum{j=0}{J-1}\frac{c_j}{nj}+\mathcal{O}\left(n{-J}\right)\right),\qquad n \rightarrow \infty.] Here we need $J<\infty$ to approximate $\mathcal{R}_n$, because (like the Stirling series) this series diverges if $J\rightarrow\infty$. By applying our recursive relation to the Chudnovsky formula, we solve an open problem posed by Han and Chen.

Summary

We haven't generated a summary for this paper yet.