Realizing limit cycles in dissipative bosonic systems (2401.05332v2)
Abstract: We propose a general mechanism for generating limit cycle (LC) oscillations by coupling a linear bosonic mode to a dissipative nonlinear bosonic mode. By analyzing the stability matrix, we show that LCs arise due to a supercritical Hopf bifurcation. We find that the existence of LCs is independent of the sign of the effective nonlinear interaction. The LC phase can be classified as a continuous time crystal (CTC), if it emerges in a many-body system. The bosonic model can be realised in three-level systems interacting with a quantised light mode as realised in atom-cavity systems. Using such a platform, we experimentally observe LCs for the first time in an atom-cavity system with attractive optical pump lattice, thereby confirming our theoretical predictions.
- D. Walls and G. Milburn, Quantum Optics, SpringerLink: Springer e-Books (Springer Berlin Heidelberg, 2007).
- R. H. Dicke, Coherence in Spontaneous Radiation Processes, Phys. Rev. 93, 99 (1954).
- C.-K. Chan, T. Lee, and S. Gopalakrishnan, Limit-cycle phase in driven-dissipative spin systems, Phys. Rev. A 91, 051601 (2015).
- B. Buča, C. Booker, and D. Jaksch, Algebraic theory of quantum synchronization and limit cycles under dissipation, SciPost Phys. 12, 097 (2022).
- K. Wadenpfuhl and C. Adams, Emergence of synchronisation in a driven-dissipative hot Rydberg vapor (2023), arXiv:2306.05188 [physics.atom-ph] .
- B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nature Communications 10, 1730 (2019).
- Y.-H. Chen and X. Zhang, Realization of an inherent time crystal in a dissipative many-body system, Nature Communications 14, 6161 (2023).
- J. Keeling, M. Bhaseen, and B. Simons, Collective Dynamics of Bose-Einstein Condensates in Optical Cavities, Phys. Rev. Lett. 105, 043001 (2010).
- J. Fan and S. Jia, Collective dynamics of the unbalanced three-level Dicke model, Phys. Rev. A 107, 033711 (2023).
- See Supplemental Material for more details.
- C. Emary and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67, 066203 (2003).
- A. Kosior, H. Ritsch, and F. Mivehvar, Nonequilibrium phases of ultracold bosons with cavity-induced dynamic gauge fields (2022), arXiv:2208.04602 [cond-mat.quant-gas] .
- X. Nie and W. Zheng, Nonequilibrium phases of a fermi gas inside a cavity with imbalanced pumping, Phys. Rev. A 108, 043312 (2023).
- J. G. Cosme, J. Skulte, and L. Mathey, Time crystals in a shaken atom-cavity system, Phys. Rev. A 100, 053615 (2019).
- M. Wagner, A nonlinear transformation of SU(3)-spin-operators to bosonic operators, Physics Letters A 53, 1 (1975).
- C. H. Johansen, J. Lang, and F. Piazza, The role of atomic interactions in cavity-induced continuous time crystals (2023), arXiv:2310.16661 [cond-mat.quant-gas] .