Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Realizing limit cycles in dissipative bosonic systems (2401.05332v2)

Published 10 Jan 2024 in cond-mat.quant-gas and quant-ph

Abstract: We propose a general mechanism for generating limit cycle (LC) oscillations by coupling a linear bosonic mode to a dissipative nonlinear bosonic mode. By analyzing the stability matrix, we show that LCs arise due to a supercritical Hopf bifurcation. We find that the existence of LCs is independent of the sign of the effective nonlinear interaction. The LC phase can be classified as a continuous time crystal (CTC), if it emerges in a many-body system. The bosonic model can be realised in three-level systems interacting with a quantised light mode as realised in atom-cavity systems. Using such a platform, we experimentally observe LCs for the first time in an atom-cavity system with attractive optical pump lattice, thereby confirming our theoretical predictions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. D. Walls and G. Milburn, Quantum Optics, SpringerLink: Springer e-Books (Springer Berlin Heidelberg, 2007).
  2. R. H. Dicke, Coherence in Spontaneous Radiation Processes, Phys. Rev. 93, 99 (1954).
  3. C.-K. Chan, T. Lee, and S. Gopalakrishnan, Limit-cycle phase in driven-dissipative spin systems, Phys. Rev. A 91, 051601 (2015).
  4. B. Buča, C. Booker, and D. Jaksch, Algebraic theory of quantum synchronization and limit cycles under dissipation, SciPost Phys. 12, 097 (2022).
  5. K. Wadenpfuhl and C. Adams, Emergence of synchronisation in a driven-dissipative hot Rydberg vapor (2023), arXiv:2306.05188 [physics.atom-ph] .
  6. B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nature Communications 10, 1730 (2019).
  7. Y.-H. Chen and X. Zhang, Realization of an inherent time crystal in a dissipative many-body system, Nature Communications 14, 6161 (2023).
  8. J. Keeling, M. Bhaseen, and B. Simons, Collective Dynamics of Bose-Einstein Condensates in Optical Cavities, Phys. Rev. Lett. 105, 043001 (2010).
  9. J. Fan and S. Jia, Collective dynamics of the unbalanced three-level Dicke model, Phys. Rev. A 107, 033711 (2023).
  10. See Supplemental Material for more details.
  11. C. Emary and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67, 066203 (2003).
  12. A. Kosior, H. Ritsch, and F. Mivehvar, Nonequilibrium phases of ultracold bosons with cavity-induced dynamic gauge fields (2022), arXiv:2208.04602 [cond-mat.quant-gas] .
  13. X. Nie and W. Zheng, Nonequilibrium phases of a fermi gas inside a cavity with imbalanced pumping, Phys. Rev. A 108, 043312 (2023).
  14. J. G. Cosme, J. Skulte, and L. Mathey, Time crystals in a shaken atom-cavity system, Phys. Rev. A 100, 053615 (2019).
  15. M. Wagner, A nonlinear transformation of SU(3)-spin-operators to bosonic operators, Physics Letters A 53, 1 (1975).
  16. C. H. Johansen, J. Lang, and F. Piazza, The role of atomic interactions in cavity-induced continuous time crystals (2023), arXiv:2310.16661 [cond-mat.quant-gas] .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.