Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Bounds on the Number of Support Points of the Capacity-Achieving Input for Amplitude Constrained Poisson Channels (2401.05045v1)

Published 10 Jan 2024 in cs.IT and math.IT

Abstract: This work considers a discrete-time Poisson noise channel with an input amplitude constraint $\mathsf{A}$ and a dark current parameter $\lambda$. It is known that the capacity-achieving distribution for this channel is discrete with finitely many points. Recently, for $\lambda=0$, a lower bound of order $\sqrt{\mathsf{A}}$ and an upper bound of order $\mathsf{A} \log2(\mathsf{A})$ have been demonstrated on the cardinality of the support of the optimal input distribution. In this work, we improve these results in several ways. First, we provide upper and lower bounds that hold for non-zero dark current. Second, we produce a sharper upper bound with a far simpler technique. In particular, for $\lambda=0$, we sharpen the upper bound from the order of $\mathsf{A} \log2(\mathsf{A})$ to the order of $\mathsf{A}$. Finally, some other additional information about the location of the support is provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. J. P. Gordon, “Quantum effects in communications systems,” Proceedings of the IRE, vol. 50, no. 9, pp. 1898–1908, 1962.
  2. N. Farsad, W. Chuang, A. Goldsmith, C. Komninakis, M. Médard, C. Rose, L. Vandenberghe, E. E. Wesel, and R. D. Wesel, “Capacities and optimal input distributions for particle-intensity channels,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 6, no. 3, pp. 220–232, 2020.
  3. S. Verdú, “Poisson communication theory,” International Technion Communication Day in Honor of Israel Bar-David, vol. 66, 1999.
  4. R. McEliece, E. Rodemich, and A. Rubin, “The practical limits of photon communication,” Jet Propulsion Laboratory Deep Space Network Progress Reports, vol. 42, pp. 63–67, 1979.
  5. S. Shamai, “Capacity of a pulse amplitude modulated direct detection photon channel,” IEE Proceedings I (Communications, Speech and Vision), vol. 137, no. 6, pp. 424–430, 1990.
  6. J. Cao, S. Hranilovic, and J. Chen, “Capacity-achieving distributions for the discrete-time Poisson channel Part i: General properties and numerical techniques,” IEEE Trans. Commun., vol. 62, no. 1, pp. 194–202, 2014.
  7. ——, “Capacity-achieving distributions for the discrete-time Poisson channel Part ii: Binary inputs,” IEEE Trans. Commun., vol. 62, no. 1, pp. 203–213, 2014.
  8. J. G. Smith, “The information capacity of amplitude-and variance-constrained scalar Gaussian channels,” Information and control, vol. 18, no. 3, pp. 203–219, 1971.
  9. A. Dytso, L. Barletta, and S. S. Shitz, “Properties of the support of the capacity-achieving distribution of the amplitude-constrained Poisson noise channel,” IEEE Trans. Inf. Theory, vol. 67, no. 11, pp. 7050–7066, 2021.
  10. S. Karlin, “Pólya type distributions, ii,” The Annals of Mathematical Statistics, vol. 28, no. 2, pp. 281–308, 1957.
  11. A. Martinez, “Spectral efficiency of optical direct detection,” JOSA B, vol. 24, no. 4, pp. 739–749, 2007.
  12. ——, “Achievability of the rate 12⁢log⁡(1+ϵs)121subscriptitalic-ϵ𝑠\frac{1}{2}\log(1+\epsilon_{s})divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_log ( 1 + italic_ϵ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) in the discrete-time Poisson channel,” arXiv preprint arXiv:0809.3370, 2008.
  13. A. Lapidoth, J. H. Shapiro, V. Venkatesan, and L. Wang, “The discrete-time Poisson channel at low input powers,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3260–3272, 2011.
  14. L. Wang and G. W. Wornell, “A refined analysis of the Poisson channel in the high-photon-efficiency regime,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4299–4311, 2014.
  15. ——, “The impact of dark current on the wideband Poisson channel,” in 2014 IEEE Intern. Symp. on Inf. Theory (ISIT).   IEEE, 2014, pp. 2924–2928.
  16. D. Brady and S. Verdú, “The asymptotic capacity of the direct detection photon channel with a bandwidth constraint,” in 28th Allerton Conf. Commun., Control and Comp., Oct. 1990, pp. 691–700.
  17. M. Cheraghchi and J. Ribeiro, “Improved capacity upper bounds for the discrete-time Poisson channel,” arXiv preprint arXiv:1801.02745, 2018.
  18. ——, “Non-asymptotic capacity upper bounds for the discrete-time Poisson channel with positive dark current,” arXiv preprint arXiv:2010.14858, 2020.
  19. A. Lapidoth and S. M. Moser, “On the capacity of the discrete-time Poisson channel,” IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 303–322, 2009.
  20. R. Tijdeman, “On the number of zeros of general exponential polynomials,” in Indagationes Mathematicae (Proceedings), vol. 74.   North-Holland, 1971, pp. 1–7.
  21. L. Barletta and A. Dytso, “Poisson noise channel with dark current: Numerical computation of the optimal input distribution,” in IEEE Intern. Conf. on Commun., 2022, pp. 4812–4817.
  22. A. Dytso, S. Yagli, H. V. Poor, and S. Shamai, “The capacity achieving distribution for the amplitude constrained additive Gaussian channel: An upper bound on the number of mass points,” IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2006–2022, 2020.
  23. W. Labidi, C. Deppe, and H. Boche, “Information-theoretical analysis of event-triggered molecular communication,” arXiv preprint arXiv:2310.16507, 2023.
  24. A. Dytso and H. Vincent Poor, “Estimation in Poisson noise: Properties of the conditional mean estimator,” IEEE Trans. Inf. Theory, vol. 66, no. 7, pp. 4304–4323, 2020.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com