Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An improvement of the lower bound of the number of integers in Littlewood's conjecture (2401.05027v2)

Published 10 Jan 2024 in math.NT and math.DS

Abstract: In this paper, we improve the results in the author's previous paper \cite{Usu22}, which deals with the quantitative problem on Littlewood's conjecture. We show that, for any $0<\gamma<1$, any $(\alpha,\beta)\in\mathbb{R}2$ except on a set with Hausdorff dimension about $\sqrt{\gamma}$, any small $0<\varepsilon<1$ and any large $N\in\mathbb{N}$, the number of integers $n\in[1,N]$ such that $n\langle n\alpha\rangle\langle n\beta\rangle<\varepsilon$ is greater than $\gamma(\log N)2/(\log\log N)2$ up to a universal constant.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com