Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed-Form Interpretation of Neural Network Classifiers with Symbolic Gradients (2401.04978v2)

Published 10 Jan 2024 in cs.LG and cs.AI

Abstract: I introduce a unified framework for finding a closed-form interpretation of any single neuron in an artificial neural network. Using this framework I demonstrate how to interpret neural network classifiers to reveal closed-form expressions of the concepts encoded in their decision boundaries. In contrast to neural network-based regression, for classification, it is in general impossible to express the neural network in the form of a symbolic equation even if the neural network itself bases its classification on a quantity that can be written as a closed-form equation. The interpretation framework is based on embedding trained neural networks into an equivalence class of functions that encode the same concept. I interpret these neural networks by finding an intersection between the equivalence class and human-readable equations defined by a symbolic search space. The approach is not limited to classifiers or full neural networks and can be applied to arbitrary neurons in hidden layers or latent spaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Explainable deep learning in healthcare: A methodological survey from an attribution view. WIREs Mechanisms of Disease, 14(3), January 2022. URL: http://dx.doi.org/10.1002/wsbm.1548, doi:10.1002/wsbm.1548.
  2. To explain or not to explain?—artificial intelligence explainability in clinical decision support systems. PLOS Digital Health, 1(2):e0000016, February 2022. URL: http://dx.doi.org/10.1371/journal.pdig.0000016, doi:10.1371/journal.pdig.0000016.
  3. Explainable ai under contract and tort law: legal incentives and technical challenges. Artificial Intelligence and Law, 28(4):415–439, January 2020. URL: http://dx.doi.org/10.1007/s10506-020-09260-6, doi:10.1007/s10506-020-09260-6.
  4. Legal requirements on explainability in machine learning. Artificial Intelligence and Law, 29(2):149–169, July 2020. URL: http://dx.doi.org/10.1007/s10506-020-09270-4, doi:10.1007/s10506-020-09270-4.
  5. Interpretable hierarchical symbolic regression for safety-critical systems with an application to highway crash prediction. Engineering Applications of Artificial Intelligence, 117:105534, January 2023. URL: http://dx.doi.org/10.1016/j.engappai.2022.105534, doi:10.1016/j.engappai.2022.105534.
  6. Interpretable and explainable machine learning for materials science and chemistry. Accounts of Materials Research, 3(6):597–607, June 2022. URL: http://dx.doi.org/10.1021/accountsmr.1c00244, doi:10.1021/accountsmr.1c00244.
  7. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE, 10(7):e0130140, July 2015. URL: http://dx.doi.org/10.1371/journal.pone.0130140, doi:10.1371/journal.pone.0130140.
  8. Axiomatic attribution for deep networks. In International conference on machine learning, pages 3319–3328. PMLR, 2017.
  9. Learning important features through propagating activation differences. In International conference on machine learning, pages 3145–3153. PMLR, 2017.
  10. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73:1–15, February 2018. URL: http://dx.doi.org/10.1016/j.dsp.2017.10.011, doi:10.1016/j.dsp.2017.10.011.
  11. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–3937, March 2016. URL: http://dx.doi.org/10.1073/pnas.1517384113, doi:10.1073/pnas.1517384113.
  12. Distilling free-form natural laws from experimental data. Science, 324(5923):81–85, April 2009. URL: http://dx.doi.org/10.1126/science.1165893, doi:10.1126/science.1165893.
  13. Kernel methods for interpretable machine learning of order parameters. Physical Review B, 96(20), November 2017. URL: http://dx.doi.org/10.1103/PhysRevB.96.205146, doi:10.1103/physrevb.96.205146.
  14. Probing hidden spin order with interpretable machine learning. Physical Review B, 99(6), February 2019. URL: http://dx.doi.org/10.1103/PhysRevB.99.060404, doi:10.1103/physrevb.99.060404.
  15. Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications, 9(1), November 2018. URL: http://dx.doi.org/10.1038/s41467-018-07210-0, doi:10.1038/s41467-018-07210-0.
  16. Discovering symbolic models from deep learning with inductive biases. Advances in Neural Information Processing Systems, 33:17429–17442, 2020.
  17. Rediscovering orbital mechanics with machine learning. Machine Learning: Science and Technology, 4(4):045002, October 2023. URL: http://dx.doi.org/10.1088/2632-2153/acfa63, doi:10.1088/2632-2153/acfa63.
  18. Machine learning of explicit order parameters: From the ising model to su(2) lattice gauge theory. Physical Review B, 96(18), November 2017. URL: http://dx.doi.org/10.1103/PhysRevB.96.184410, doi:10.1103/physrevb.96.184410.
  19. Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data. Nature Communications, 12(1), June 2021. URL: http://dx.doi.org/10.1038/s41467-021-23952-w, doi:10.1038/s41467-021-23952-w.
  20. Discovering symmetry invariants and conserved quantities by interpreting siamese neural networks. Physical Review Research, 2(3), September 2020. URL: http://dx.doi.org/10.1103/PhysRevResearch.2.033499, doi:10.1103/physrevresearch.2.033499.
  21. Discovering invariants via machine learning. Physical Review Research, 3(4), December 2021. URL: http://dx.doi.org/10.1103/PhysRevResearch.3.L042035, doi:10.1103/physrevresearch.3.l042035.
  22. Machine learning conservation laws from trajectories. Physical Review Letters, 126(18), May 2021. URL: http://dx.doi.org/10.1103/PhysRevLett.126.180604, doi:10.1103/physrevlett.126.180604.
  23. Ahmed M Alaa and Mihaela van der Schaar. Demystifying black-box models with symbolic metamodels. Advances in Neural Information Processing Systems, 32, 2019.
  24. Symbolic metamodels for interpreting black-boxes using primitive functions, 2023. URL: https://arxiv.org/abs/2302.04791, doi:10.48550/ARXIV.2302.04791.
  25. Learning outside the black-box: The pursuit of interpretable models. Advances in neural information processing systems, 33:17838–17849, 2020.
  26. Operon c++: an efficient genetic programming framework for symbolic regression. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO ’20. ACM, July 2020. URL: http://dx.doi.org/10.1145/3377929.3398099, doi:10.1145/3377929.3398099.
  27. Pysindy: A comprehensive python package for robust sparse system identification. Journal of Open Source Software, 7(69):3994, January 2022. URL: http://dx.doi.org/10.21105/joss.03994, doi:10.21105/joss.03994.
  28. An approach to symbolic regression using feyn, 2021. URL: https://arxiv.org/abs/2104.05417, doi:10.48550/ARXIV.2104.05417.
  29. Improving model-based genetic programming for symbolic regression of small expressions. Evolutionary Computation, 29(2):211–237, 2021. URL: http://dx.doi.org/10.1162/evco_a_00278, doi:10.1162/evco_a_00278.
  30. Trevor Stephens. Gplearn version 0.4.2. https://github.com/trevorstephens/gplearn, 2022.
  31. Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl, 2023. URL: https://arxiv.org/abs/2305.01582, doi:10.48550/ARXIV.2305.01582.
  32. Extrapolation and learning equations, 2016. URL: https://arxiv.org/abs/1610.02995, doi:10.48550/ARXIV.1610.02995.
  33. Learning equations for extrapolation and control. In International Conference on Machine Learning, pages 4442–4450. PMLR, 2018.
  34. Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients. In International Conference on Learning Representations, 2020.
  35. End-to-end symbolic regression with transformers. Advances in Neural Information Processing Systems, 35:10269–10281, 2022.
  36. Ai feynman: A physics-inspired method for symbolic regression. Science Advances, 6(16), April 2020. URL: http://dx.doi.org/10.1126/sciadv.aay2631, doi:10.1126/sciadv.aay2631.
  37. Interpretable scientific discovery with symbolic regression: A review, 2022. URL: https://arxiv.org/abs/2211.10873, doi:10.48550/ARXIV.2211.10873.
  38. Let’s have a coffee with the standard model of particle physics! Physics Education, 52(3):034001, March 2017. URL: http://dx.doi.org/10.1088/1361-6552/aa5b25, doi:10.1088/1361-6552/aa5b25.
  39. Fischer Black. The pricing of commodity contracts. Journal of Financial Economics, 3(1–2):167–179, January 1976. URL: http://dx.doi.org/10.1016/0304-405X(76)90024-6, doi:10.1016/0304-405x(76)90024-6.
  40. Louis de Broglie. Xxxv. a tentative theory of light quanta. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(278):446–458, February 1924. URL: http://dx.doi.org/10.1080/14786442408634378, doi:10.1080/14786442408634378.
  41. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org. URL: https://www.tensorflow.org/.

Summary

We haven't generated a summary for this paper yet.