A Three-dimensional tumor growth model and its boundary instability (2401.04954v1)
Abstract: In this paper, we investigate the tumor instability by employing both analytical and numerical techniques to validate previous results and extend the analytical findings presented in a prior study by Feng et al 2023. Building upon the insights derived from the analytical reconstruction of key results in the aforementioned work in one dimension (1D) and two dimensions (2D), we extend our analysis to three dimensions (3D). Specifically, we focus on the determination of boundary instability using perturbation and asymptotic analysis along with spherical harmonics. Additionally, we have validated our analytical results in a two-dimensional framework by implementing the Alternating Directional Implicit (ADI) method, as detailed in Witelski and Bowen (2003). Our primary focus has been on ensuring that the numerical simulation of the propagation speed aligns accurately with the analytical findings. Furthermore, we have matched the simulated boundary stability with the analytical predictions derived from the evolution function, which will be defined in subsequent sections of our paper. These alignment is essential for accurately determining the stability or instability of tumor boundaries.
- Friedman, A., Reitich, F.: Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Transactions of the American Mathematical Society 353(4), 1587–1634 (2001) Greenpan [1972] Greenpan, H.: Models for the growth of solid tumor as a problem by diffusion. Appl. Math. Comput 30, 215–222 (1972) Feng et al. [2023] Feng, Y., Tang, M., Xu, X., Zhou, Z.: Tumor boundary instability induced by nutrient consumption and supply. Zeitschrift für angewandte Mathematik und Physik 74(3), 107 (2023) Liu et al. [2018] Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Greenpan, H.: Models for the growth of solid tumor as a problem by diffusion. Appl. Math. Comput 30, 215–222 (1972) Feng et al. [2023] Feng, Y., Tang, M., Xu, X., Zhou, Z.: Tumor boundary instability induced by nutrient consumption and supply. Zeitschrift für angewandte Mathematik und Physik 74(3), 107 (2023) Liu et al. [2018] Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Feng, Y., Tang, M., Xu, X., Zhou, Z.: Tumor boundary instability induced by nutrient consumption and supply. Zeitschrift für angewandte Mathematik und Physik 74(3), 107 (2023) Liu et al. [2018] Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- Greenpan, H.: Models for the growth of solid tumor as a problem by diffusion. Appl. Math. Comput 30, 215–222 (1972) Feng et al. [2023] Feng, Y., Tang, M., Xu, X., Zhou, Z.: Tumor boundary instability induced by nutrient consumption and supply. Zeitschrift für angewandte Mathematik und Physik 74(3), 107 (2023) Liu et al. [2018] Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Feng, Y., Tang, M., Xu, X., Zhou, Z.: Tumor boundary instability induced by nutrient consumption and supply. Zeitschrift für angewandte Mathematik und Physik 74(3), 107 (2023) Liu et al. [2018] Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- Feng, Y., Tang, M., Xu, X., Zhou, Z.: Tumor boundary instability induced by nutrient consumption and supply. Zeitschrift für angewandte Mathematik und Physik 74(3), 107 (2023) Liu et al. [2018] Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- Liu, J.-G., Tang, M., Wang, L., Zhou, Z.: An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics 364, 73–94 (2018) Araujo and McElwain [2004] Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- Araujo, R.P., McElwain, D.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bulletin of mathematical biology 66(5), 1039–1091 (2004) Byrne et al. [2006] Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: a review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1843), 1563–1578 (2006) Lowengrub et al. [2009] Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), 1 (2009) Roose et al. [2007] Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM review 49(2), 179–208 (2007) National Institute of Standards and Technology [Accessed 2023] National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- National Institute of Standards and Technology: Chapter 10: Bessel Functions. [Online; accessed 6-May-2023] (Accessed 2023). https://dlmf.nist.gov/10 Witelski and Bowen [2003] Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003) Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)
- Witelski, T.P., Bowen, M.: ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45(2-3), 331–351 (2003)