Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Real-time Impurity Solver Using Grassmann Time-Evolving Matrix Product Operators (2401.04880v2)

Published 10 Jan 2024 in cond-mat.str-el and quant-ph

Abstract: An emergent and promising tensor-network-based impurity solver is to represent the path integral as a matrix product state, where the bath is analytically integrated out using Feynman-Vernon influence functional. Here we present an approach to calculate the equilibrium impurity spectral function based on the recently proposed Grassmann time-evolving matrix product operators method. The central idea is to perform a quench from a separable impurity-bath initial state as in the non-equilibrium scenario. The retarded Green's function $G(t+t_0, t'+t_0)$ is then calculated after an equilibration time $t_0$ such that the impurity and bath are approximately in thermal equilibrium. There are two major advantages of this method. First, since we focus on real-time dynamics, we do not need to perform the numerically ill-posed analytic continuation in the continuous-time quantum Monte Carlo case that relies on imaginary-time evolution. Second, the entanglement growth of the matrix product states in real-time calculations is observed to be much slower than that in imaginary-time calculations, leading to a significant improvement in numerical efficiency. The accuracy of this method is demonstrated in the single-orbital Anderson impurity model and benchmarked against the continuous-time quantum Monte Carlo method.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com