Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

On the stabilization of a virtual element method for an acoustic vibration problem (2401.04485v1)

Published 9 Jan 2024 in math.NA and cs.NA

Abstract: In this paper we introduce an abstract setting for the convergence analysis of the virtual element approximation of an acoustic vibration problem. We discuss the effect of the stabilization parameters and remark that in some cases it is possible to achieve optimal convergence without the need of any stabilization. This statement is rigorously proved for lowest order triangular element and supported by several numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. A C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-nonconforming virtual element methods for the vibration and buckling problems of thin plates. Comput. Methods Appl. Mech. Engrg., 403:Paper No. 115763, 24, 2023.
  2. A generic grid interface for parallel and adaptive scientific computing. part II: Implementation and tests in DUNE. Computing, 82(2–3):121–138, 2008.
  3. Basic principles of virtual element methods. Math. Models Methods Appl. Sci., 23(1):199–214, 2013.
  4. A virtual element method for the acoustic vibration problem. Numer. Math., 136(3):725–763, 2017.
  5. Lowest order stabilization free virtual element method for the 2D Poisson equation. arXiv:2103.16896 [math.NA], 2021.
  6. Comparison of standard and stabilization free virtual elements on anisotropic elliptic problems. Appl. Math. Lett., 129:Paper No. 107971, 5, 2022.
  7. A first-order stabilization-free virtual element method. Appl. Math. Lett., 142:Paper No. 108641, 6, 2023.
  8. D. Boffi. A note on the derham complex and a discrete compactness property. Applied Mathematics Letters, 14(1):33–38, 2001.
  9. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp., 69(229):121–140, 2000.
  10. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal., 36(4):1264–1290, 1999.
  11. Daniele Boffi. Approximation of eigenvalues in mixed form, discrete compactness property, and application to h⁢pℎ𝑝hpitalic_h italic_p mixed finite elements. Comput. Methods Appl. Mech. Engrg., 196(37-40):3672–3681, 2007.
  12. Daniele Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1–120, 2010.
  13. Mixed finite element methods and applications, volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.
  14. On the convergence of eigenvalues for mixed formulations. volume 25, pages 131–154 (1998). 1997. Dedicated to Ennio De Giorgi.
  15. Approximation of PDE eigenvalue problems involving parameter dependent matrices. Calcolo, 57(4):Paper No. 41, 21, 2020.
  16. Virtual element approximation of eigenvalue problems. In The virtual element method and its applications, volume 31 of SEMA SIMAI Springer Ser., pages 275–320. Springer, Cham, [2022] ©2022.
  17. Basic principles of mixed virtual element methods. ESAIM: Mathematical Modelling and Numerical Analysis, 48(4):1227–1240, 2014.
  18. Alvin Chen and N. Sukumar. Stabilization-free serendipity virtual element method for plane elasticity. Comput. Methods Appl. Mech. Engrg., 404:Paper No. 115784, 19, 2023.
  19. Monique Dauge. Benchmark computations for Maxwell equations for the approximation of highly singular solutions. https://perso.univ-rennes1.fr/monique.dauge/benchmax.html#3.2DomA_EP. Accessed: 2023-08-21.
  20. A framework for implementing general virtual element spaces. to appear in SIAM J. Sci. Comput., 2024.
  21. Python bindings for the DUNE-FEM module. Zenodo. doi, 10, 2020.
  22. The nonconforming virtual element method for eigenvalue problems. ESAIM Math. Model. Numer. Anal., 53(3):749–774, 2019.
  23. Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal., 38(4):2026–2054, 2018.
  24. Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.
  25. SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.
  26. Fumio Kikuchi. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Engrg., 64(1-3):509–521, 1987.
  27. Fumio Kikuchi. Weak formulations for finite element analysis of an electromagnetic eigenvalue problem. Sci. Papers College Arts Sci., Univ. Tokyo, 38:43–67, 1988.
  28. Fumio Kikuchi. On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36(3):479–490, 1989.
  29. A Hu-Washizu variational approach to self-stabilized virtual elements: 2D linear elastostatics. Comput. Mech., 71(5):935–955, 2023.
  30. A virtual element method for the Steklov eigenvalue problem allowing small edges. J. Sci. Comput., 88(2):Paper No. 44, 21, 2021.
  31. A mixed virtual element method for the vibration problem of clamped Kirchhoff plate. Adv. Comput. Math., 46(5):Paper No. 68, 18, 2020.
  32. Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media. Math. Models Methods Appl. Sci., 32(8):1493–1529, 2022.
  33. A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem. Calcolo, 58(1):Paper No. 2, 22, 2021.
  34. A lowest-order free-stabilization virtual element method for the Laplacian eigenvalue problem. J. Comput. Appl. Math., 410:Paper No. 114013, 11, 2022.
  35. A virtual element method for the Laplacian eigenvalue problem in mixed form. Appl. Numer. Math., 156:1–13, 2020.
  36. P. Monk and L. Demkowicz. Discrete compactness and the approximation of Maxwell’s equations in ℝ3superscriptℝ3{\mathbb{R}}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Math. Comp., 70(234):507–523, 2001.
  37. A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J. Numer. Anal., 40(1):322–357, 2020.
  38. A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci., 25(8):1421–1445, 2015.
  39. A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl., 74(9):2172–2190, 2017.
  40. A virtual element method for the vibration problem of Kirchhoff plates. ESAIM Math. Model. Numer. Anal., 52(4):1437–1456, 2018.
  41. A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci., 28(14):2803–2831, 2018.
  42. Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Engrg., 360:112687, 22, 2020.
  43. Virtual elements for the transmission eigenvalue problem on polytopal meshes. SIAM J. Sci. Comput., 43(4):A2425–A2447, 2021.
  44. The p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-versions of the virtual element method for elliptic eigenvalue problems. Comput. Math. Appl., 79(7):2035–2056, 2020.
  45. A priori and a posteriori error estimates for a virtual element method for the non-self-adjoint Steklov eigenvalue problem. IMA J. Numer. Anal., 42(4):3675–3710, 2022.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.