Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SoK: Systematization and Benchmarking of Deepfake Detectors in a Unified Framework (2401.04364v4)

Published 9 Jan 2024 in cs.CV, cs.CR, and cs.LG

Abstract: Deepfakes have rapidly emerged as a serious threat to society due to their ease of creation and dissemination, triggering the accelerated development of detection technologies. However, many existing detectors rely on labgenerated datasets for validation, which may not prepare them for novel, real-world deepfakes. This paper extensively reviews and analyzes state-of-the-art deepfake detectors, evaluating them against several critical criteria. These criteria categorize detectors into 4 high-level groups and 13 finegrained sub-groups, aligned with a unified conceptual framework we propose. This classification offers practical insights into the factors affecting detector efficacy. We evaluate the generalizability of 16 leading detectors across comprehensive attack scenarios, including black-box, white-box, and graybox settings. Our systematized analysis and experiments provide a deeper understanding of deepfake detectors and their generalizability, paving the way for future research and the development of more proactive defenses against deepfakes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (140)
  1. B. M. Le and S. Woo, “Quality-agnostic deepfake detection with intra-model collaborative learning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
  2. C. Feng, Z. Chen, and A. Owens, “Self-supervised video forensics by audio-visual anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  3. S. Tariq, S. Jeon, and S. Woo, “Am i a real or fake celebrity? measuring commercial face recognition web apis under deepfake impersonation attack,” arXiv preprint arXiv:2103.00847, 2021.
  4. Z. Wang, J. Bao, W. Zhou, W. Wang, and H. Li, “Altfreezing for more general video face forgery detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  5. S. Tariq, S. Jeon, and S. S. Woo, “Evaluating trustworthiness and racial bias in face recognition apis using deepfakes,” Computer, vol. 56, no. 5, pp. 51–61, 2023.
  6. DeepFaceLab GitHub Community, “Deepfacelab,” https://github.com/iperov/DeepFaceLab, 2023, accessed: 2023-01-01.
  7. FaceSwap GitHub Community, “Faceswap,” https://github.com/MarekKowalski/FaceSwap, 2016, accessed: 2021-01-01.
  8. A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe, “First order motion model for image animation,” in Conference on Neural Information Processing Systems, 2019.
  9. Federal Bureau of Investigation (FBI), “Deepfakes and stolen pii utilized to apply for remote work positions,” https://www.ic3.gov/Media/Y2022/PSA220628, 2022, accessed: 2022-07-01.
  10. S. Tariq, A. Abuadbba, and K. Moore, “Deepfake in the metaverse: Security implications for virtual gaming, meetings, and offices,” in Proceedings of the 2nd Workshop on Security Implications of Deepfakes and Cheapfakes, ser. WDC ’23.   New York, NY, USA: Association for Computing Machinery, 2023, p. 16–19. [Online]. Available: https://doi.org/10.1145/3595353.3595880
  11. C. Li, L. Wang, S. Ji, X. Zhang, Z. Xi, S. Guo, and T. Wang, “Seeing is living? rethinking the security of facial liveness verification in the deepfake era,” in 31st USENIX Security Symposium (USENIX Security 22), 2022.
  12. The Open Worldwide Application Security Project (OWASP), “Broken authentication,” https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/, 2023.
  13. W. Bai, Y. Liu, Z. Zhang, B. Li, and W. Hu, “Aunet: Learning relations between action units for face forgery detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  14. H. H. Nguyen, J. Yamagishi, and I. Echizen, “Capsule-forensics: Using capsule networks to detect forged images and videos,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2019.
  15. S. Tariq, S. Lee, and S. Woo, “One detector to rule them all: Towards a general deepfake attack detection framework,” in Proceedings of the web conference 2021, 2021.
  16. Y. Qian, G. Yin, L. Sheng, Z. Chen, and J. Shao, “Thinking in frequency: Face forgery detection by mining frequency-aware clues,” in European conference on computer vision.   Springer, 2020.
  17. L. Song, Z. Fang, X. Li, X. Dong, Z. Jin, Y. Chen, and S. Lyu, “Adaptive face forgery detection in cross domain,” in European Conference on Computer Vision.   Springer, 2022.
  18. B. M. Le and S. S. Woo, “Add: Frequency attention and multi-view based knowledge distillation to detect low-quality compressed deepfake images,” in Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022.
  19. C. Tan, Y. Zhao, S. Wei, G. Gu, and Y. Wei, “Learning on gradients: Generalized artifacts representation for gan-generated images detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  20. L. Jiang, R. Li, W. Wu, C. Qian, and C. C. Loy, “Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.
  21. A. Haliassos, K. Vougioukas, S. Petridis, and M. Pantic, “Lips don’t lie: A generalisable and robust approach to face forgery detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  22. J. Pu, N. Mangaokar, L. Kelly, P. Bhattacharya, K. Sundaram, M. Javed, B. Wang, and B. Viswanath, “Deepfake videos in the wild: Analysis and detection,” in Proceedings of the Web Conference 2021, 2021.
  23. H. Zhao, W. Zhou, D. Chen, T. Wei, W. Zhang, and N. Yu, “Multi-attentional deepfake detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  24. K. Shiohara and T. Yamasaki, “Detecting deepfakes with self-blended images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
  25. B. Le, S. Tariq, A. Abuadbba, K. Moore, and S. Woo, “Why do facial deepfake detectors fail?” in Proceedings of the 2nd Workshop on Security Implications of Deepfakes and Cheapfakes, ser. WDC ’23.   New York, NY, USA: Association for Computing Machinery, 2023, p. 24–28. [Online]. Available: https://doi.org/10.1145/3595353.3595882
  26. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, “Faceforensics++: Learning to detect manipulated facial images,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
  27. L. Yuezun, Y. Xin, S. Pu, Q. Honggang, and L. Siwei, “Celeb-df: A large-scale challenging dataset for deepfake forensics,” in IEEE Conference on Computer Vision and Patten Recognition (CVPR), 2020.
  28. Y. Mirsky and W. Lee, “The creation and detection of deepfakes: A survey,” ACM Computing Surveys (CSUR), 2021.
  29. J. W. Seow, M. K. Lim, R. C. Phan, and J. K. Liu, “A comprehensive overview of deepfake: Generation, detection, datasets, and opportunities,” Neurocomputing, vol. 513, pp. 351–371, 2022.
  30. Z. Yan, Y. Zhang, X. Yuan, S. Lyu, and B. Wu, “Deepfakebench: A comprehensive benchmark of deepfake detection,” in Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
  31. B. Cho, B. M. Le, J. Kim, S. Woo, S. Tariq, A. Abuadbba, and K. Moore, “Towards understanding of deepfake videos in the wild,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 4530–4537.
  32. L. Verdoliva, “Media forensics and deepfakes: an overview,” IEEE Journal of Selected Topics in Signal Processing, 2020.
  33. R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-Garcia, “Deepfakes and beyond: A survey of face manipulation and fake detection,” Information Fusion, 2020.
  34. F. Juefei-Xu, R. Wang, Y. Huang, Q. Guo, L. Ma, and Y. Liu, “Countering malicious deepfakes: Survey, battleground, and horizon,” International journal of computer vision, 2022.
  35. S. A. Khan and D. T. Dang Nguyen, “Deepfake detection: A comparative analysis,” arXiv preprint arXiv:2308.03471, 2023.
  36. M. S. Rana, M. N. Nobi, B. Murali, and A. H. Sung, “Deepfake detection: A systematic literature review,” IEEE access, 2022.
  37. T. T. Nguyen, Q. V. H. Nguyen, D. T. Nguyen, D. T. Nguyen, T. Huynh-The, S. Nahavandi, T. T. Nguyen, Q.-V. Pham, and C. M. Nguyen, “Deep learning for deepfakes creation and detection: A survey,” Computer Vision and Image Understanding, 2022.
  38. A. Malik, M. Kuribayashi, S. M. Abdullahi, and A. N. Khan, “Deepfake detection for human face images and videos: A survey,” Ieee Access, 2022.
  39. A. Naitali, M. Ridouani, F. Salahdine, and N. Kaabouch, “Deepfake attacks: Generation, detection, datasets, challenges, and research directions,” Computers, 2023.
  40. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, 2020.
  41. Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan: Unified generative adversarial networks for multi-domain image-to-image translation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
  42. T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.
  43. Y. LeCun, “Phd thesis: Modeles connexionnistes de l’apprentissage (connectionist learning models),” 1987.
  44. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  45. D. O’Sullivan and J. Passantino, “‘verified’ twitter accounts share fake image of ‘explosion’ near pentagon, causing confusion,” https://edition.cnn.com/2023/05/22/tech/twitter-fake-image-pentagon-explosion/index.html, 2023, accessed: 2023-05-31.
  46. B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and C. C. Ferrer, “The deepfake detection challenge (dfdc) dataset,” arXiv preprint arXiv:2006.07397, 2020.
  47. H. Khalid, S. Tariq, M. Kim, and S. S. Woo, “Fakeavceleb: A novel audio-video multimodal deepfake dataset,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2021.
  48. H. Khalid, M. Kim, S. Tariq, and S. S. Woo, “Evaluation of an audio-video multimodal deepfake dataset using unimodal and multimodal detectors,” in Proceedings of the 1st Workshop on Synthetic Multimedia-Audiovisual Deepfake Generation and Detection, 2021, pp. 7–15.
  49. DeepFakes GitHub Community, “Deepfakes,” https://github.com/deepfakes/faceswap, 2017, accessed: 2021-01-01.
  50. L. Li, J. Bao, H. Yang, D. Chen, and F. Wen, “Faceshifter: Towards high fidelity and occlusion aware face swapping,” arXiv preprint arXiv:1912.13457, 2019.
  51. Y. Nirkin, Y. Keller, and T. Hassner, “FSGAN: Subject agnostic face swapping and reenactment,” in Proceedings of the IEEE International Conference on Computer Vision, 2019.
  52. Druuzil Tech & Games - Youtube Channel, “Scarlett johansson in ”moulin rouge!” - deepfake,” https://www.youtube.com/watch?v=E5VdGFjbf8E, 2023, accessed: 2023-05-01.
  53. DFaker GitHub Community, “Dfaker,” https://github.com/dfaker/df, 2017.
  54. R. Chen, X. Chen, B. Ni, and Y. Ge, “SimSwap,” in Proceedings of the 28th ACM International Conference on Multimedia.   ACM, 2020. [Online]. Available: https://doi.org/10.1145%2F3394171.3413630
  55. T.-C. Wang, A. Mallya, and M.-Y. Liu, “One-shot free-view neural talking-head synthesis for video conferencing,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  56. J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner, “Face2face: Real-time face capture and reenactment of rgb videos,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
  57. J. Thies, M. Zollhöfer, and M. Nießner, “Deferred neural rendering: Image synthesis using neural textures,” ACM Transactions on Graphics (TOG), 2019.
  58. Media Education Lab, “Belgium climate politics - trump deep fake,” https://www.youtube.com/watch?v=8o0iOm-2sLw, 2021, accessed: 2023-05-01.
  59. MIT’s Center for Advanced Virtuality, “In event of moon disaster,” https://moondisaster.org/, 2020, accessed: 2023-05-01.
  60. Andrew, Stable Diffusion Art, “Fine-tune your ai images with these simple prompting techniques,” https://stable-diffusion-art.com/fine-tune-your-ai-images-with-these-simple-prompting-techniques/, 2022, accessed: 2023-05-01.
  61. L. Zheng, Y. Zhang, and V. L. Thing, “A survey on image tampering and its detection in real-world photos,” Journal of Visual Communication and Image Representation, 2019.
  62. M. Kim, S. Tariq, and S. S. Woo, “Cored: Generalizing fake media detection with continual representation using distillation,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 337–346.
  63. S. Tariq, S. Lee, and S. S. Woo, “A convolutional lstm based residual network for deepfake video detection,” arXiv preprint arXiv:2009.07480, 2020.
  64. S. Lee, S. Tariq, J. Kim, and S. S. Woo, “Tar: Generalized forensic framework to detect deepfakes using weakly supervised learning,” in IFIP International Conference on ICT Systems Security and Privacy Protection.   Springer, 2021, pp. 351–366.
  65. S. Tariq, S. Lee, H. Kim, Y. Shin, and S. S. Woo, “Gan is a friend or foe?: a framework to detect various fake face images,” in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.   ACM, 2019, pp. 1296–1303.
  66. J. Kim, S. Tariq, and S. S. Woo, “Ptd: Privacy-preserving human face processing framework using tensor decomposition,” in Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, 2022, pp. 1296–1303. [Online]. Available: https://doi.org/10.1145/3477314.3507036
  67. S. Lee, S. Tariq, Y. Shin, and S. S. Woo, “Detecting handcrafted facial image manipulations and gan-generated facial images using shallow-fakefacenet,” Applied Soft Computing, vol. 105, p. 107256, 2021.
  68. M. Kim, S. Tariq, and S. S. Woo, “Fretal: Generalizing deepfake detection using knowledge distillation and representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1001–1012.
  69. S. Tariq, S. Lee, H. Kim, Y. Shin, and S. S. Woo, “Detecting both machine and human created fake face images in the wild,” in Proceedings of the 2nd International Workshop on Multimedia Privacy and Security.   ACM, 2018, pp. 81–87.
  70. X. Dong, J. Bao, D. Chen, T. Zhang, W. Zhang, N. Yu, D. Chen, F. Wen, and B. Guo, “Protecting celebrities from deepfake with identity consistency transformer,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
  71. L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo, “Face x-ray for more general face forgery detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.
  72. J. Cao, C. Ma, T. Yao, S. Chen, S. Ding, and X. Yang, “End-to-end reconstruction-classification learning for face forgery detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
  73. S. Chen, T. Yao, Y. Chen, S. Ding, J. Li, and R. Ji, “Local relation learning for face forgery detection,” in Proceedings of the AAAI conference on artificial intelligence, 2021.
  74. J. Hu, X. Liao, J. Liang, W. Zhou, and Z. Qin, “Finfer: Frame inference-based deepfake detection for high-visual-quality videos,” in Proceedings of the AAAI conference on artificial intelligence, 2022.
  75. T. Wang and K. P. Chow, “Noise based deepfake detection via multi-head relative-interaction,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2023.
  76. N. Bonettini, E. D. Cannas, S. Mandelli, L. Bondi, P. Bestagini, and S. Tubaro, “Video face manipulation detection through ensemble of cnns,” in 2020 25th international conference on pattern recognition (ICPR).   IEEE, 2021.
  77. D. A. Coccomini, N. Messina, C. Gennaro, and F. Falchi, “Combining efficientnet and vision transformers for video deepfake detection,” in International conference on image analysis and processing.   Springer, 2022.
  78. Y. Zheng, J. Bao, D. Chen, M. Zeng, and F. Wen, “Exploring temporal coherence for more general video face forgery detection,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021.
  79. Z. Sun, Y. Han, Z. Hua, N. Ruan, and W. Jia, “Improving the efficiency and robustness of deepfakes detection through precise geometric features,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
  80. H. Liu, X. Li, W. Zhou, Y. Chen, Y. He, H. Xue, W. Zhang, and N. Yu, “Spatial-phase shallow learning: rethinking face forgery detection in frequency domain,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  81. J. Fei, Y. Dai, P. Yu, T. Shen, Z. Xia, and J. Weng, “Learning second order local anomaly for general face forgery detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
  82. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  83. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
  84. M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE transactions on Signal Processing, 1997.
  85. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  86. Y. Wang, K. Yu, C. Chen, X. Hu, and S. Peng, “Dynamic graph learning with content-guided spatial-frequency relation reasoning for deepfake detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  87. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
  88. J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a” siamese” time delay neural network,” Advances in neural information processing systems, 1993.
  89. M. Masood, M. Nawaz, K. M. Malik, A. Javed, A. Irtaza, and H. Malik, “Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward,” Applied intelligence, 2023.
  90. C. Wang and W. Deng, “Representative forgery mining for fake face detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  91. X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, “Face alignment across large poses: A 3d solution,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
  92. A. Bulat and G. Tzimiropoulos, “How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks),” in International Conference on Computer Vision, 2017.
  93. J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface: Single-shot multi-level face localisation in the wild,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.
  94. D. E. King, “Dlib-ml: A machine learning toolkit,” The Journal of Machine Learning Research, 2009.
  95. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks,” IEEE Signal Processing Letters, 2016.
  96. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  97. S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” Advances in neural information processing systems, 2017.
  98. L. Chen, Y. Zhang, Y. Song, J. Wang, and L. Liu, “Ost: Improving generalization of deepfake detection via one-shot test-time training,” Advances in Neural Information Processing Systems, 2022.
  99. Y. Luo, Y. Zhang, J. Yan, and W. Liu, “Generalizing face forgery detection with high-frequency features,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  100. J. Stehouwer, H. Dang, F. Liu, X. Liu, and A. Jain, “On the detection of digital face manipulation,” arXiv, 2019.
  101. Y. Ni, D. Meng, C. Yu, C. Quan, D. Ren, and Y. Zhao, “Core: Consistent representation learning for face forgery detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
  102. B. Huang, Z. Wang, J. Yang, J. Ai, Q. Zou, Q. Wang, and D. Ye, “Implicit identity driven deepfake face swapping detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  103. Y. Xu, K. Raja, L. Verdoliva, and M. Pedersen, “Learning pairwise interaction for generalizable deepfake detection,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023.
  104. K. Sun, H. Liu, Q. Ye, Y. Gao, J. Liu, L. Shao, and R. Ji, “Domain general face forgery detection by learning to weight,” in Proceedings of the AAAI conference on artificial intelligence, 2021.
  105. K. Sun, T. Yao, S. Chen, S. Ding, J. Li, and R. Ji, “Dual contrastive learning for general face forgery detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2022.
  106. S. Cao, Q. Zou, X. Mao, D. Ye, and Z. Wang, “Metric learning for anti-compression facial forgery detection,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021.
  107. S. Dong, J. Wang, R. Ji, J. Liang, H. Fan, and Z. Ge, “Implicit identity leakage: The stumbling block to improving deepfake detection generalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  108. W. Zhuang, Q. Chu, Z. Tan, Q. Liu, H. Yuan, C. Miao, Z. Luo, and N. Yu, “Uia-vit: Unsupervised inconsistency-aware method based on vision transformer for face forgery detection,” in European Conference on Computer Vision.   Springer, 2022.
  109. B. Zi, M. Chang, J. Chen, X. Ma, and Y.-G. Jiang, “Wilddeepfake: A challenging real-world dataset for deepfake detection,” in Proceedings of the 28th ACM international conference on multimedia, 2020.
  110. H. Qi, Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, W. Feng, Y. Liu, and J. Zhao, “Deeprhythm: Exposing deepfakes with attentional visual heartbeat rhythms,” in Proceedings of the 28th ACM international conference on multimedia, 2020.
  111. X. Li, Y. Lang, Y. Chen, X. Mao, Y. He, S. Wang, H. Xue, and Q. Lu, “Sharp multiple instance learning for deepfake video detection,” in Proceedings of the 28th ACM international conference on multimedia, 2020.
  112. D. Zhang, C. Li, F. Lin, D. Zeng, and S. Ge, “Detecting deepfake videos with temporal dropout 3dcnn.” in IJCAI, 2021.
  113. Z. Hu, H. Xie, Y. Wang, J. Li, Z. Wang, and Y. Zhang, “Dynamic inconsistency-aware deepfake video detection.” in IJCAI, 2021, pp. 736–742.
  114. Z. Gu, Y. Chen, T. Yao, S. Ding, J. Li, and L. Ma, “Delving into the local: Dynamic inconsistency learning for deepfake video detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2022.
  115. Z. Gu, T. Yao, Y. Chen, S. Ding, and L. Ma, “Hierarchical contrastive inconsistency learning for deepfake video detection,” in European Conference on Computer Vision.   Springer, 2022.
  116. Z. Gu, Y. Chen, T. Yao, S. Ding, J. Li, F. Huang, and L. Ma, “Spatiotemporal inconsistency learning for deepfake video detection,” in Proceedings of the 29th ACM international conference on multimedia, 2021.
  117. J. Guan, H. Zhou, Z. Hong, E. Ding, J. Wang, C. Quan, and Y. Zhao, “Delving into sequential patches for deepfake detection,” Advances in Neural Information Processing Systems, 2022.
  118. J. Li, H. Xie, J. Li, Z. Wang, and Y. Zhang, “Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  119. I. Masi, A. Killekar, R. M. Mascarenhas, S. P. Gurudatt, and W. AbdAlmageed, “Two-branch recurrent network for isolating deepfakes in videos,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16.   Springer, 2020.
  120. X. Zhu, H. Wang, H. Fei, Z. Lei, and S. Z. Li, “Face forgery detection by 3d decomposition,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  121. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International conference on machine learning.   PMLR, 2019.
  122. Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-df: A large-scale challenging dataset for deepfake forensics,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.
  123. DeepFaker Application, “Deepfaker,” https://deepfaker.app/, 2021, accessed: 2023-01-01.
  124. N. Dufour and A. Gully, “Contributing data to deepfake detection research,” https://blog.research.google/2019/09/contributing-data-to-deepfake-detection.html, 2019, accessed: 2023-01-01.
  125. Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset and benchmark for large-scale face recognition,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14.   Springer, 2016.
  126. J. Ricker, S. Damm, T. Holz, and A. Fischer, “Towards the detection of diffusion model deepfakes,” arXiv preprint arXiv:2210.14571, 2022.
  127. FacePlay Application, “Faceplay app,” https://www.faceplay.cc/, 2021, accessed: 2023-01-01.
  128. DeepFakesWeb Site, “Deepfakesweb,” https://deepfakesweb.com/, 2021, accessed: 2023-01-01.
  129. DeepFaceLive, “Deepfacelive,” https://drive.google.com/file/d/1KS37b2IBuljJuZiJsgnWuzs7Y5OfkOyI/view/, 2023, accessed: 2023-01-01.
  130. FaceApp, “Faceapp,” https://www.faceapp.com/, 2021, accessed: 2023-01-01.
  131. Reface Application, “Reface,” https://reface.app/, 2021, accessed: 2023-01-01.
  132. S. A. Lu, “faceswap-gan,” https://github.com/shaoanlu/faceswap-GAN, 2023, accessed: 2023-01-01.
  133. Revive Application, “Revive,” https://play.google.com/store/apps/details?id=revive.app&hl=en&gl=US/, 2021, accessed: 2023-01-01.
  134. Fakeit Application, “Fakeit,” https://vk.com/fakeit/, 2021, accessed: 2023-01-01.
  135. DeepFaker Bot Site, “Deepfakerbot,” https://t.me/DeepFakerBot/, 2021, accessed: 2023-01-01.
  136. Revel AI BV, “Revelai,” http://revel.ai/, 2021, accessed: 2023-01-01.
  137. R. Chen, X. Chen, B. Ni, and Y. Ge, “SimSwap,” in Proceedings of the 28th ACM International Conference on Multimedia.   ACM, oct 2020. [Online]. Available: https://doi.org/10.1145%2F3394171.3413630
  138. LicoLico Application, “Licolico,” http://licolico.cn/home/, 2021, accessed: 2023-01-01.
  139. DeepfakeStudio Application, “Deepfakestudio,” https://play.google.com/store/apps/details?id=com.deepworkings.dfstudio&hl=en&gl=US&pli=1/, 2021, accessed: 2023-01-01.
  140. Deepcake.io Site, “Deepcakeio,” http://deepcake.io/, 2021, accessed: 2023-01-01.
Citations (6)

Summary

We haven't generated a summary for this paper yet.