Implementation of space-division multiplexed entanglement-based quantum cryptography over multicore fiber (2401.04327v1)
Abstract: Quantum communication implementations require efficient and reliable quantum channels. Optical fibers have proven to be an ideal candidate for distributing quantum states. Thus, today's efforts address overcoming issues towards high data transmission and long-distance implementations. Here, we experimentally demonstrate the secret key rate enhancement via space-division multiplexing using a multicore fiber. Our multiplexing technique exploits the momentum correlation of photon pairs generated by spontaneous parametric down-conversion. We distributed polarization-entangled photon pairs into opposite cores within a 19-core multicore fiber. We estimated the secret key rates in a configuration with 6 and 12 cores from the entanglement visibility after transmission through 411 m long multicore fiber.
- H.-K. Lo, X. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett. 94, 230504 (2005).
- P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, Fiber-optic transmission and networking: the previous 20 and the next 20 years invited𝑖𝑛𝑣𝑖𝑡𝑒𝑑inviteditalic_i italic_n italic_v italic_i italic_t italic_e italic_d , Opt. Express 26, 24190 (2018).
- D. J. Richardson, J. M. Fini, and L. E. Nelson, Space-division multiplexing in optical fibres, Nature Photon. 7, 354 (2013).
- B. J. Puttnam, G. Rademacher, and R. S. Luís, Space-division multiplexing for optical fiber communications, Optica 8, 1186 (2021).
- G. B. Xavier and G. Lima, Quantum information processing with space-division multiplexing optical fibres, Commun. Phys. 3, 9 (2020).
- X. Ma, C.-H. F. Fung, and H.-K. Lo, Quantum key distribution with entangled photon sources, Phys. Rev. A 76, 012307 (2007).
- T. Kim, M. Fiorentino, and F. N. C. Wong, Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer, Phys. Rev. A 73, 012316 (2006).