Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Differentially Private PCA and Estimation for Spiked Covariance Matrices (2401.03820v2)

Published 8 Jan 2024 in math.ST, cs.IT, math.IT, stat.ME, stat.ML, and stat.TH

Abstract: Estimating a covariance matrix and its associated principal components is a fundamental problem in contemporary statistics. While optimal estimation procedures have been developed with well-understood properties, the increasing demand for privacy preservation introduces new complexities to this classical problem. In this paper, we study optimal differentially private Principal Component Analysis (PCA) and covariance estimation within the spiked covariance model. We precisely characterize the sensitivity of eigenvalues and eigenvectors under this model and establish the minimax rates of convergence for estimating both the principal components and covariance matrix. These rates hold up to logarithmic factors and encompass general Schatten norms, including spectral norm, Frobenius norm, and nuclear norm as special cases. We propose computationally efficient differentially private estimators and prove their minimax optimality for sub-Gaussian distributions, up to logarithmic factors. Additionally, matching minimax lower bounds are established. Notably, compared to the existing literature, our results accommodate a diverging rank, a broader range of signal strengths, and remain valid even when the sample size is much smaller than the dimension, provided the signal strength is sufficiently strong. Both simulation studies and real data experiments demonstrate the merits of our method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.