Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and high-fidelity dispersive readout of a spin qubit via squeezing and resonator nonlinearity (2401.03617v1)

Published 8 Jan 2024 in cond-mat.mes-hall and quant-ph

Abstract: Fast and high-fidelity qubit measurement is crucial for achieving quantum error correction, a fundamental element in the development of universal quantum computing. For electron spin qubits, fast readout stands out as a major obstacle in the pursuit of error correction. In this work, we explore the dispersive measurement of an individual spin in a semiconductor double quantum dot coupled to a nonlinear microwave resonator. By utilizing displaced squeezed vacuum states, we achieve rapid and high-fidelity readout for semiconductor spin qubits. Our findings reveal that introducing modest squeezing and mild nonlinearity can significantly improve both the signal-to-noise ratio (SNR) and the fidelity of qubit-state readout. By properly marching the phases of squeezing, the nonlinear strength, and the local oscillator, the optimal readout time can be reduced to the sub-microsecond range. With current technology parameters ($\kappa\approx 2\chi_s$, $\chi_s\approx 2\pi\times 0.15 :\mbox{MHz}$), utilizing a displaced squeezed vacuum state with $30$ photons and a modest squeezing parameter $r\approx 0.6$, along with a nonlinear microwave resonator charactered by a strength of $\lambda\approx -1.2 \chi_s$, a readout fidelity of $98\%$ can be attained within a readout time of around $0.6:\mu\mbox{s}$. Intriguing, by using a positive nonlinear strength of $\lambda\approx 1.2\chi_s$, it is possible to achieve an SNR of approximately $6$ and a readout fidelity of $99.99\%$ at a slightly later time, around $0.9:\mu\mbox{s}$, while maintaining all other parameters at the same settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. S. Takeda and A. Furusawa, APL Photonics 4, 060902 (2019).
  2. H. Riel, Quantum Computing Technology and Roadmap, IEEE 52nd European Solid-State Device Research Conference 306, 25 (2022).
  3. B. M. Terhal, Rev. Mod. Phys. 87, 307 (2015).
  4. A. Saraiva and S. D. Bartlett, Nat. Mater. 1 (2022).
  5. L. M. K. Vandersypen and M. A. Eriksson, Phys. Today 72, 38 (2019).
  6. R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).
  7. E. J. Connors, J. J. Nelson, and J. M. Nichol, Phys. Rev. Appl. 13, 024019 (2020).
  8. C. Lyu, C. Lv, and Q. Zhou, Phys. Rev. Lett. 125, 253401 (2020).
  9. S. E. Dwyer, G. L. Mansell, and L. McCuller, Galaxies 10, 46 (2022).
  10. S. Barzanjeh, D. P. DiVincenzo, and B. M. Terhal, Phys. Rev. B 90, 134515 (2014).
  11. N. Didier, J. Bourassa, and A. Blais, Phys. Rev. Lett. 115, 203601 (2015).
  12. C. F. Kam, and X. D. Hu, arXiv preprint arXiv:2312.10820 
  13. L. C. G. Govia and A. A. Clerk, New J. Phys. 19, 023044 (2017).
  14. B. D’Anjou and G. Burkard, Phys. Rev. B 100, 245427 (2019).
  15. C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985).
  16. C. Gardiner and P. Zoller, Quantum noise (Springer, 2004).
  17. D. F. Walls, Nature 306, 141 (1983).
  18. W. M. Zhang, R. Gilmore, and D. H. Feng, Rev. Mod. Phys. 4, 867 (1990).
  19. H. P. Yuen, and V. W. S. Chan, Opt. Lett. 8, 177 (1983).
  20. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge university press, 1995).
Citations (1)

Summary

We haven't generated a summary for this paper yet.