Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadrotor Stabilization with Safety Guarantees: A Universal Formula Approach (2401.03500v1)

Published 7 Jan 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Safe stabilization is a significant challenge for quadrotors, which involves reaching a goal position while avoiding obstacles. Most of the existing solutions for this problem rely on optimization-based methods, demanding substantial onboard computational resources. This paper introduces a novel approach to address this issue and provides a solution that offers fast computational capabilities tailored for onboard execution. Drawing inspiration from Sontag's universal formula, we propose an analytical control strategy that incorporates the conditions of control Lyapunov functions (CLFs) and control barrier functions (CBFs), effectively avoiding the need for solving optimization problems onboard. Moreover, we extend our approach by incorporating the concepts of input-to-state stability (ISS) and input-to-state safety (ISSf), enhancing the universal formula's capacity to effectively manage disturbances. Furthermore, we present a projection-based approach to ensure that the universal formula remains effective even when faced with control input constraints. The basic idea of this approach is to project the control input derived from the universal formula onto the closest point within the control input domain. Through comprehensive simulations and experimental results, we validate the efficacy and highlight the advantages of our methodology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. S. S. Mansouri, C. Kanellakis, E. Fresk, D. Kominiak, and G. Nikolakopoulos, “Cooperative coverage path planning for visual inspection,” Control Engineering Practice, vol. 74, pp. 118–131, 2018.
  2. C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: a review,” Precision Agriculture, vol. 13, pp. 693–712, 2012.
  3. T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue,” IEEE Robotics & Automation Magazine, vol. 19, no. 3, pp. 46–56, 2012.
  4. M. Huang, B. Xian, C. Diao, K. Yang, and Y. Feng, “Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping,” in Proceedings of the 2010 American Control Conference.   IEEE, 2010, pp. 2076–2081.
  5. L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based maneuvers for teams of quadrotors using differential flatness,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 3293–3298.
  6. G. Wu and K. Sreenath, “Safety-critical control of a 3d quadrotor with range-limited sensing,” in Dynamic Systems and Control Conference, vol. 50695.   American Society of Mechanical Engineers, 2016, p. V001T05A006.
  7. M. Khan, T. Ibuki, and A. Chatterjee, “Safety uncertainty in control barrier functions using gaussian processes,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6003–6009.
  8. Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis: Theory, Methods & Applications, vol. 7, no. 11, pp. 1163–1173, 1983.
  9. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.
  10. M. Z. Romdlony and B. Jayawardhana, “Uniting control Lyapunov and control barrier functions,” in 53rd IEEE Conference on Decision and Control.   IEEE, 2014, pp. 2293–2298.
  11. E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization,” Systems & Control Letters, vol. 13, no. 2, pp. 117–123, 1989.
  12. P. Braun and C. M. Kellett, “On (the existence of) control Lyapunov barrier functions,” 2017.
  13. M. Jankovic, “Robust control barrier functions for constrained stabilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367, 2018.
  14. B. B. Carlos, T. Sartor, A. Zanelli, G. Frison, W. Burgard, M. Diehl, and G. Oriolo, “An efficient real-time NMPC for quadrotor position control under communication time-delay,” in 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV).   IEEE, 2020, pp. 982–989.
  15. B. Lindqvist, S. S. Mansouri, A.-a. Agha-mohammadi, and G. Nikolakopoulos, “Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6001–6008, 2020.
  16. T. Jin, X. Wang, H. Ji, J. Di, and H. Yan, “Collision avoidance for multiple quadrotors using elastic safety clearance based model predictive control,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 265–271.
  17. X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, 2015.
  18. C. Luis and J. L. Ny, “Design of a trajectory tracking controller for a nanoquadcopter,” arXiv preprint arXiv:1608.05786, 2016.
  19. B. Xu and K. Sreenath, “Safe teleoperation of dynamic UAVs through control barrier functions,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 7848–7855.
  20. S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza, “A comparative study of nonlinear mpc and differential-flatness-based control for quadrotor agile flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3357–3373, 2022.
  21. W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, and P. Kozierski, “Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering,” in 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR).   IEEE, 2017, pp. 37–42.
  22. M. Ndje, L. Bitjoka, A. T. Boum, D. J. F. Mbogne, L. Buşoniu, J. C. Kamgang, and G. V. T. Djogdom, “Fast constrained nonlinear model predictive control for implementation on microcontrollers,” IFAC-PapersOnLine, vol. 54, no. 4, pp. 19–24, 2021.
  23. R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren, A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados—a modular open-source framework for fast embedded optimal control,” Mathematical Programming Computation, vol. 14, no. 1, pp. 147–183, 2022.
  24. R. M. Bena, S. Hossain, B. Chen, W. Wu, and Q. Nguyen, “A hybrid quadratic programming framework for real-time embedded safety-critical control,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 3418–3424.
  25. M. Li and Z. Sun, “A graphical interpretation and universal formula for safe stabilization,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 3012–3017.
  26. P. Ong and J. Cortés, “Universal formula for smooth safe stabilization,” in 2019 IEEE 58th conference on decision and control (CDC).   IEEE, 2019, pp. 2373–2378.
  27. M. Zhao, S. Lin, Y. Cao, Z. Zhou, T. Shi, and C. Xia, “Explicit model predictive cascade-free direct force and torque control of quadrotors,” IEEE Transactions on Industrial Electronics, 2023.
  28. P. Jagtap, G. J. Pappas, and M. Zamani, “Control barrier functions for unknown nonlinear systems using Gaussian processes,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 3699–3704.
  29. Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC), 2016, pp. 322–328.
  30. R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,” IEEE Robotics & Automation Magazine, vol. 19, no. 3, pp. 20–32, 2012.
  31. T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor UAV on SE (3),” in 49th IEEE Conference on Decision and Control (CDC).   IEEE, 2010, pp. 5420–5425.
  32. T. Lee, K. Sreenath, and V. Kumar, “Geometric control of cooperating multiple quadrotor UAVs with a suspended payload,” in 52nd IEEE Conference on Decision and Control (CDC).   IEEE, 2013, pp. 5510–5515.
  33. Y.-C. Choi and H.-S. Ahn, “Nonlinear control of quadrotor for point tracking: Actual implementation and experimental tests,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 3, pp. 1179–1192, 2014.
  34. E. D. Sontag et al., “Smooth stabilization implies coprime factorization,” IEEE Transactions on Automatic Control, vol. 34, no. 4, pp. 435–443, 1989.
  35. Z. Lyu, X. Xu, and Y. Hong, “Small-gain theorem for safety verification under high-relative-degree constraints,” arXiv preprint arXiv:2204.04376, 2022.
  36. A. J. Taylor, “Robust safety-critical control: A Lyapunov and barrier approach,” Ph.D. dissertation, California Institute of Technology, 2023.
  37. S. Kolathaya and A. D. Ames, “Input-to-state safety with control barrier functions,” IEEE Control Systems Letters, vol. 3, no. 1, pp. 108–113, 2018.
  38. J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel, “Nonlinear feedback control of quadrotors exploiting first-order drag effects,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 8189–8195, 2017.
  39. R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered safety for legged robots via control barrier functions and model predictive control,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 8352–8358.
Citations (2)

Summary

We haven't generated a summary for this paper yet.