Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A deep learning framework for jointly extracting spectra and source-count distributions in astronomy (2401.03336v1)

Published 6 Jan 2024 in astro-ph.IM, astro-ph.CO, astro-ph.HE, and cs.LG

Abstract: Astronomical observations typically provide three-dimensional maps, encoding the distribution of the observed flux in (1) the two angles of the celestial sphere and (2) energy/frequency. An important task regarding such maps is to statistically characterize populations of point sources too dim to be individually detected. As the properties of a single dim source will be poorly constrained, instead one commonly studies the population as a whole, inferring a source-count distribution (SCD) that describes the number density of sources as a function of their brightness. Statistical and machine learning methods for recovering SCDs exist; however, they typically entirely neglect spectral information associated with the energy distribution of the flux. We present a deep learning framework able to jointly reconstruct the spectra of different emission components and the SCD of point-source populations. In a proof-of-concept example, we show that our method accurately extracts even complex-shaped spectra and SCDs from simulated maps.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. G. Aartsen et al. A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics. The Astrophysical Journal, 893(2):102, 2020. 10.3847/1538-4357/ab7af9.
  2. K. N. Abazajian. The consistency of Fermi-LAT observations of the galactic center with a millisecond pulsar population in the central stellar cluster. Journal of Cosmology and Astroparticle Physics, 2011(03):010, 2011. 10.1088/1475-7516/2011/03/010.
  3. WIMPs at the galactic center. Journal of Cosmology and Astroparticle Physics, 2015(05):011, 2015. 10.1088/1475-7516/2011/03/010.
  4. The origin of the extragalactic gamma-ray background and implications for dark matter annihilation. The Astrophysical Journal Letters, 800(2):L27, 2015. 10.1088/2041-8205/800/2/L27.
  5. Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning. Preprint, 2023. arXiv:2302.01947.
  6. X. Barcons. Confusion Noise and Source Clustering. The Astrophysical Journal, 396:460, Sept. 1992.
  7. Foreground mismodeling and the point source explanation of the Fermi Galactic Center excess. Physical Review D, 102(2):23023, 2020. 10.1103/PhysRevD.102.023023.
  8. Searching for dark matter subhalos in the Fermi-LAT catalog with Bayesian neural networks. Preprint, 2023. arXiv:2304.00032.
  9. Background model systematics for the Fermi GeV excess. Journal of Cosmology and Astroparticle Physics, 2015(03):038, 2015. 10.1088/1475-7516/2015/03/038.
  10. Mind the gap: the discrepancy between simulation and reality drives interpretations of the Galactic Center Excess. Journal of Cosmology and Astroparticle Physics, 2023(6), 2023. 10.1088/1475-7516/2023/06/013.
  11. Analyzing γ𝛾\gammaitalic_γ rays of the Galactic Center with deep learning. Journal of Cosmology and Astroparticle Physics, 2018(05):058–058, 2018. 10.1088/1475-7516/2018/05/058.
  12. Characterizing the nature of the unresolved point sources in the Galactic Center: An assessment of systematic uncertainties. Physical Review D, 101(2):023014, 2020. 10.1103/PhysRevD.101.023014.
  13. A Compound Poisson Generator Approach to Point-source Inference in Astrophysics. The Astrophysical Journal Supplement Series, 260(2):29, 2022. 10.3847/1538-4365/ac5cb7.
  14. Deepsphere: a Graph-Based Spherical Cnn. In 8th International Conference on Learning Representations, ICLR 2020, 2020. arXiv:2012.15000.
  15. Fermi Collaboration. The large area telescope on the fermi gamma-ray space telescope mission. The Astrophysical Journal, 697(2):1071–1102, 2009. 10.1088/0004-637X/697/2/1071.
  16. M. Fox and H. Rubin. Admissibility of quantile estimates of a single location parameter. The Annals of Mathematical Statistics, pages 1019–1030, 1964. jstor:2238233.
  17. Millisecond pulsars from accretion-induced collapse as the origin of the galactic centre gamma-ray excess signal. Nature Astronomy, 6(6):703–707, 2022. 10.1038/s41550-022-01658-3.
  18. L. Goodenough and D. Hooper. Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope, 2009. arXiv:0910.2998.
  19. C. Gordon and O. Macías. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations. Physical Review D, 88:083521, Oct 2013. 10.1103/PhysRevD.88.083521.
  20. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. The Astrophysical Journal, 622(2):759–771, 2005. 10.1086/427976.
  21. The nuclear spectroscopic telescope array (nustar) high-energy x-ray mission. The Astrophysical Journal, 770(2):103, 2013. 10.1088/0004-637X/770/2/103.
  22. D. Hooper and L. Goodenough. Dark matter annihilation in the Galactic Center as seen by the Fermi Gamma Ray Space Telescope. Physics Letters B, 697(5):412–428, 2011. 10.1016/j.physletb.2011.02.029.
  23. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint, 2014. arXiv:1412.6980.
  24. R. Koenker and G. Bassett. Regression Quantiles. Econometrica, 46(1):33, 1978. 10.2307/1913643.
  25. Revival of the Dark Matter Hypothesis for the Galactic Center Gamma-Ray Excess. Physical Review Letters, 123(24):241101, 2019. 10.1103/PhysRevLett.123.241101.
  26. Spurious point source signals in the galactic center excess. Physical Review Letters, 125(12):121105, 2020. 10.1103/PhysRevLett.125.121105.
  27. The enigmatic Galactic Center excess: Spurious point sources and signal mismodeling. Physical Review D, 102(6):063019, 2020. 10.1103/PhysRevD.102.063019.
  28. Evidence for Unresolved γ𝛾\gammaitalic_γ-Ray Point Sources in the Inner Galaxy. Physical Review Letters, 116(5):051103, 2016. 10.1103/PhysRevLett.116.051103.
  29. F. List. The earth mover’s pinball loss: Quantiles for histogram-valued regression. In International Conference on Machine Learning, pages 6713–6724. PMLR, 2021. arXiv:2106.02051.
  30. Extracting the Galactic Center excess’ source-count distribution with neural nets. Physical Review D, 104(12):123022, 2021. 10.1103/PhysRevD.104.123022.
  31. Galactic Center Excess in a New Light: Disentangling the γ𝛾\gammaitalic_γ -Ray Sky with Bayesian Graph Convolutional Neural Networks. Physical Review Letters, 125(24):241102, 2020. 10.1103/PhysRevLett.125.241102.
  32. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess. Nature Astronomy, 2:387–392, 2018. 10.1038/s41550-018-0414-3.
  33. Strong evidence that the galactic bulge is shining in gamma rays. Journal of Cosmology and Astroparticle Physics, 2019(9):042, 2019. 10.1088/1475-7516/2019/09/042.
  34. D. Malyshev and D. W. Hogg. Statistics of gamma-ray point sources below the Fermi detection limit. The Astrophysical Journal, 738(2):181, 2011. 10.1088/0004-637X/738/2/181.
  35. Testing gamma-ray models of blazars in the extragalactic sky. Physical Review D, 101:103026, 2020. 10.1103/PhysRevD.101.103026.
  36. S. Mishra-Sharma and K. Cranmer. Neural simulation-based inference approach for characterizing the Galactic Center γ𝛾\gammaitalic_γ -ray excess. Physical Review D, 105(6):063017, 2022. 10.1103/PhysRevD.105.063017.
  37. NPTFit : A Code Package for Non-Poissonian Template Fitting. The Astronomical Journal, 153(6):253, 2017. 10.3847/1538-3881/aa6d5f.
  38. T. Miyaji and R. E. Griffiths. Faint source counts from off-source fluctuation analysis on Chandra observations of the Hubble deep field-north. The Astrophysical Journal Letters, 564:L5, 2002. 10.1086/338794.
  39. DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications. Astronomy and Computing, 27:130–146, 2019. 10.1016/j.ascom.2019.03.004.
  40. The diffuse γ𝛾\gammaitalic_γ-ray background is dominated by star-forming galaxies. Nature, 597(7876):341–344, 2021. 10.1038/s41586-021-03802-x.
  41. P. A. G. Scheuer. A statistical method for analysing observations of faint radio stars. Proceedings of the Cambridge Philosophical Society, 53:764–773, Jan. 1957.
  42. Statistical Measurement of the Gamma-ray Source-count Distribution as a Function of Energy. The Astrophysical Journal, 826(2):L31, 2016. 10.3847/2041-8205/826/2/L31.
  43. Unveiling the Gamma-Ray Source Count Distribution Below the Fermi Detection Limit With Photon Statistics. The Astrophysical Journal Supplement Series, 225(2):18, 2016. 10.3847/0067-0049/225/2/18.

Summary

We haven't generated a summary for this paper yet.