Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The spectrum of Artin motives (2401.02722v2)

Published 5 Jan 2024 in math.AG, math.CT, and math.RT

Abstract: We analyze the tt-geometry of derived Artin motives, via modular representation theory of profinite groups. To illustrate our methods, we discuss Artin motives over a finite field, in which case we also prove stratification.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Paul Balmer. The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math., 588:149–168, 2005.
  2. Paul Balmer. Tensor triangular geometry. In Proc. of the International Congress of Mathematicians. Volume II, pages 85–112. Hindustan Book Agency, New Delhi, 2010.
  3. Paul Balmer. On the surjectivity of the map of spectra associated to a tensor-triangulated functor. Bull. Lond. Math. Soc., 50(3):487–495, 2018.
  4. Descent in tensor triangular geometry, 2023. Preprint: arXiv:2305.02308.
  5. Generalized tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. (3), 102(6):1161–1185, 2011.
  6. Permutation modules, Mackey functors, and Artin motives. To appear in Proceedings of ICRA 2020, available at arxiv/2107.11797, preprint 2021.
  7. Permutation modules and cohomological singularity. Comment. Math. Helv., 97(3):413–430, 2022.
  8. Three real Artin-Tate motives. Adv. Math., 406: paper no. 108535, 2022.
  9. Finite permutation resolutions. Duke Math. J., 172(2):201–229, 2023.
  10. The geometry of permutation modules. Preprint available on authors’ webpages, 2023.
  11. Stratification in tensor triangular geometry with applications to spectral Mackey functors. Camb. J. Math., 11(4):829–915, 2023.
  12. Stratifying modular representations of finite groups. Ann. of Math. (2), 174(3):1643–1684, 2011.
  13. Tensor-triangular fields: ruminations. Selecta Math. (N.S.), 25(1):25:13, 2019.
  14. Andreas W. M. Dress. Notes on the theory of representations of finite groups. Part I: The Burnside ring of a finite group and some AGN-applications. Universität Bielefeld, Fakultät für Mathematik, Bielefeld, 1971. With the aid of notes by Manfred Küchler.
  15. Spectral spaces, volume 35 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2019.
  16. On the Balmer spectrum of Morel-Voevodsky category. Preprint arxiv/2309.09077, 2023.
  17. Martin Gallauer. Tensor triangular geometry of filtered modules. Algebra Number Theory, 12(8):1975–2003, 2018.
  18. Martin Gallauer. tt-geometry of Tate motives over algebraically closed fields. Compos. Math., 155(10):1888–1923, 2019.
  19. Martin Gallauer. A note on Tannakian categories and mixed motives. Bull. Lond. Math. Soc., 53(1):119–129, 2021.
  20. Wulf-Dieter Geyer. Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist. Journal of Number Theory, 1(3):346–374, 1969.
  21. Primes and fields in stable motivic homotopy theory. Geom. Topol., 22(4):2187–2218, 2018.
  22. Henning Krause. Decomposing thick subcategories of the stable module category. Math. Ann., 313(1):95–108, 1999.
  23. Henning Krause. The stable derived category of a Noetherian scheme. Compos. Math., 141(5):1128–1162, 2005.
  24. 𝐀1superscript𝐀1{\bf A}^{1}bold_A start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90):45–143 (2001), 1999.
  25. Tobias J. Peter. Prime ideals of mixed Artin-Tate motives. Journal of K-Theory, 11(2):331–349, 004 2013.
  26. Profinite groups, volume 40 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, second edition, 2010.
  27. Alexander Vishik. Isotropic and numerical equivalence for Chow groups and Morava K-theories. Preprint arxiv/2307.15148, 2023
  28. Vladimir Voevodsky. Triangulated categories of motives over a field. In Cycles, transfers, and motivic homology theories, volume 143 of Ann. of Math. Stud., pages 188–238. Princeton Univ. Press, Princeton, NJ, 2000.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com