Towards Integrated Fine-tuning and Inference when Generative AI meets Edge Intelligence (2401.02668v1)
Abstract: The high-performance generative artificial intelligence (GAI) represents the latest evolution of computational intelligence, while the blessing of future 6G networks also makes edge intelligence (EI) full of development potential. The inevitable encounter between GAI and EI can unleash new opportunities, where GAI's pre-training based on massive computing resources and large-scale unlabeled corpora can provide strong foundational knowledge for EI, while EI can harness fragmented computing resources to aggregate personalized knowledge for GAI. However, the natural contradictory features pose significant challenges to direct knowledge sharing. To address this, in this paper, we propose the GAI-oriented synthetical network (GaisNet), a collaborative cloud-edge-end intelligence framework that buffers contradiction leveraging data-free knowledge relay, where the bidirectional knowledge flow enables GAI's virtuous-cycle model fine-tuning and task inference, achieving mutualism between GAI and EI with seamless fusion and collaborative evolution. Experimental results demonstrate the effectiveness of the proposed mechanisms. Finally, we discuss the future challenges and directions in the interplay between GAI and EI.
- Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. Yu, L. Sun, “A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt,” arXiv preprint arXiv:2303.04226, 2023.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, vol. 30, 2017.
- H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, D. Kim and others, “Enabling AI-generated content (AIGC) services in wireless edge networks,” arXiv preprint arXiv:2301.03220, 2023.
- W. Zhuang, C. Chen, L. Lyu, “When foundation model meets federated learning: Motivations, challenges, and future directions,” arXiv preprint arXiv:2306.15546, 2023.
- G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, P. Zhang, “Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G,” in Science China Information Sciences, vol. 66, no. 3, pp. 130301, 2023.
- X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online collaborative data caching in edge computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp. 281-294, 2020.
- X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H Jin, “Cost-effective app data distribution in edge computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 31-44, 2020.
- S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, X. Shen, “Distributed artificial intelligence empowered by end-edge-cloud computing: A survey,” IEEE Communications Surveys & Tutorials, 2022.
- X. Huang, P. Li, H. Du, J. Kang, D. Niyato, D. Kim, Y. Wu, “Federated Learning-Empowered AI-Generated Content in Wireless Networks,” arXiv preprint arXiv:2307.07146, 2023.
- Z. Zhang, Y. Yang, Y. Dai, Q. Wang, Y. Yu, L. Qu, Z. Xu, “FedPETuning: When federated learning meets the parameter-efficient tuning methods of pre-trained language models,” Association for Computational Linguistics (ACL), pp. 9963–9977, 2023.
- Y. Tian, Y. Wan, L. Lyu, D. Yao, H. Jin, L. Sun, “FedBERT: When federated learning meets pre-training,” in ACM Transactions on Intelligent Systems and Technology (TIST), vol. 13, no. 4, pp. 1–26, 2022.
- H. Zou, Q. Zhao, L. Bariah, M. Bennis, M. Debbah, “Wireless multi-agent generative ai: From connected intelligence to collective intelligence,” arXiv preprint arXiv:2307.02757, 2023.
- Z. Lin, G. Qu, X. Chen, K. Huang, “Split Learning in 6G Edge Networks,” arXiv preprint arXiv:2306.12194, 2023.
- A. Agarwal, M. Rezagholizadeh, P. Parthasarathi, “Practical Takes on Federated Learning with Pretrained Language Models,” Findings of the Association for Computational Linguistics: EACL 2023, pp. 454–471, 2023.
- M. Jia, L. Tang, B. Chen, C. Cardie, S. Belongie, B. Hariharan, S. Lim, Ser-Nam, “Visual prompt tuning,” European Conference on Computer Vision, pp. 709–727, 2022.
- J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, G. Neubig, “Towards a unified view of parameter-efficient transfer learning,” arXiv preprint arXiv:2110.04366, 2021.
- E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.
- J. Chen, W. Xu, S. Guo, J. Wang, J. Zhang, H. Wang, “FedTune: A Deep Dive into Efficient Federated Fine-Tuning with Pre-trained Transformers,” arXiv preprint arXiv:2211.08025, 2022.
- Z. Cheng, X. Xia, M. Liwang, X. Fan, Y. Sun, X. Wang, L. Huang, “CHEESE: distributed clustering-based hybrid federated Split learning over edge networks,” IEEE Transactions on Parallel and Distributed Systems, 2023.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly and others, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
- X. Li, S. Bi, H. Wang, “Optimizing resource allocation for joint AI model training and task inference in edge intelligence systems,” in IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 532–536, 2020.
- A. Eshratifar, M. Abrishami, M. Pedram, “JointDNN: An efficient training and inference engine for intelligent mobile cloud computing services,” in IEEE Transactions on Mobile Computing, vol. 20, no. 2, pp. 565–576, 2019.
- N. Chen, Z. Cheng, X. Fan, B. Huang, X. Du, and G. Mohsen, “Integrated Sensing, Communication, and Computing for Cost-effective Multimodal Federated Perception,” arXiv preprint arXiv:2311.03815, 2023.
- Ning Chen (128 papers)
- Zhipeng Cheng (16 papers)
- Xuwei Fan (8 papers)
- Xiaoyu Xia (15 papers)
- Lianfen Huang (13 papers)