Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modern Computing: Vision and Challenges (2401.02469v1)

Published 4 Jan 2024 in cs.DC

Abstract: Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (350)
  1. R. Buyya et al., “A manifesto for future generation cloud computing: Research directions for the next decade,” ACM Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–38, 2018.
  2. D. Lindsay et al., “The evolution of distributed computing systems: from fundamental to new frontiers,” Computing, vol. 103, no. 8, pp. 1859–1878, 2021.
  3. R. Yamashita, “History of personal computers in japan,” International Journal of Parallel, Emergent and Distributed Systems, vol. 35, no. 2, pp. 143–169, 2020.
  4. S. S. Gill et al., “Ai for next generation computing: Emerging trends and future directions,” Internet of Things, vol. 19, p. 100514, 2022.
  5. J. Gubbi et al., “Internet of things (iot): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.
  6. R. Muralidhar et al., “Energy efficient computing systems: Architectures, abstractions and modeling to techniques and standards,” ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–37, 2022.
  7. A. Chakraborty et al., “Journey from cloud of things to fog of things: Survey, new trends, and research directions,” Software: Practice and Experience, vol. 53, no. 2, pp. 496–551, 2023.
  8. A. Beloglazov et al., “Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing,” Future Generation Computer Systems, vol. 28, no. 5, pp. 755–768, 2012.
  9. V. Casamayor Pujol et al., “Fundamental research challenges for distributed computing continuum systems,” Information, vol. 14, no. 3, p. 198, 2023.
  10. J. Shalf, “The future of computing beyond moore’s law,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2166, p. 20190061, 2020.
  11. N. A. Angel et al., “Recent advances in evolving computing paradigms: Cloud, edge, and fog technologies,” Sensors, vol. 22, no. 1, p. 196, 2021.
  12. B. P. Rimal et al., “A taxonomy and survey of cloud computing systems,” in 2009 fifth international joint conference on INC, IMS and IDC, pp. 44–51, IEEE, 2009.
  13. S. S. Gill et al., “Transformative effects of IoT, blockchain and artificial intelligence on cloud computing: Evolution, vision, trends and open challenges,” Internet of Things, vol. 8, p. 100118, 2019.
  14. M. J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE, vol. 54, no. 12, pp. 1901–1909, 1966.
  15. C. E. Kozyrakis et al., “A new direction for computer architecture research,” Computer, vol. 31, no. 11, pp. 24–32, 1998.
  16. T. L. Casavant et al., “A taxonomy of scheduling in general-purpose distributed computing systems,” IEEE Transactions on software engineering, vol. 14, no. 2, pp. 141–154, 1988.
  17. J. Yu et al., “A taxonomy of workflow management systems for grid computing,” Journal of grid computing, vol. 3, pp. 171–200, 2005.
  18. J. D. Owens et al., “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.
  19. K. Compton et al., “Reconfigurable computing: a survey of systems and software,” ACM Computing Surveys (csuR), vol. 34, no. 2, pp. 171–210, 2002.
  20. S. Wright, “Cybersquatting at the intersection of internet domain names and trademark law,” IEEE Communications Surveys & Tutorials, vol. 14, no. 1, pp. 193–205, 2010.
  21. B. J. Jansen, “The graphical user interface,” ACM SIGCHI Bulletin, vol. 30, no. 2, pp. 22–26, 1998.
  22. B. H. Tay et al., “A survey of remote procedure calls,” ACM SIGOPS Operating Systems Review, vol. 24, no. 3, pp. 68–79, 1990.
  23. R. R. Suryono et al., “Peer to peer (p2p) lending problems and potential solutions: A systematic literature review,” Procedia Computer Science, vol. 161, pp. 204–214, 2019.
  24. R. Schollmeier et al., “Protocol for peer-to-peer networking in mobile environments,” in Proceedings. 12th International Conference on Computer Communications and Networks (IEEE Cat. No. 03EX712), pp. 121–127, IEEE, 2003.
  25. G. Alonso et al., Web services. Springer, 2004.
  26. R. Perrey et al., “Service-oriented architecture,” in 2003 Symposium on Applications and the Internet Workshops, 2003. Proceedings., pp. 116–119, IEEE, 2003.
  27. V. Maffione et al., “A software development kit to exploit rina programmability,” in 2016 IEEE International Conference on Communications (ICC), pp. 1–7, IEEE, 2016.
  28. L. Resende, “Handling heterogeneous data sources in a soa environment with service data objects (sdo),” in Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pp. 895–897, 2007.
  29. M. F. Mergen et al., “Virtualization for high-performance computing,” ACM SIGOPS Operating Systems Review, vol. 40, no. 2, pp. 8–11, 2006.
  30. J. O. Kephart et al., “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.
  31. S. Singh et al., “Star: Sla-aware autonomic management of cloud resources,” IEEE Transactions on Cloud Computing, vol. 8, no. 4, pp. 1040–1053, 2017.
  32. M. Othman et al., “A survey of mobile cloud computing application models,” IEEE communications surveys & tutorials, vol. 16, no. 1, pp. 393–413, 2013.
  33. A. S. AlAhmad et al., “Mobile cloud computing models security issues: A systematic review,” Journal of Network and Computer Applications, vol. 190, p. 103152, 2021.
  34. M. H. Anwar et al., “Recommender system for optimal distributed deep learning in cloud datacenters,” Wireless Personal Communications, pp. 1–25, 2022.
  35. F. Durao et al., “A systematic review on cloud computing,” The Journal of Supercomputing, vol. 68, pp. 1321–1346, 2014.
  36. S. S. Gill et al., “ROUTER: Fog enabled cloud based intelligent resource management approach for smart home iot devices,” Journal of Systems and Software, vol. 154, pp. 125–138, 2019.
  37. S. Iftikhar et al., “Ai-based fog and edge computing: A systematic review, taxonomy and future directions,” Internet of Things, p. 100674, 2022.
  38. S. S. Gill et al., “Fog-based smart healthcare as a big data and cloud service for heart patients using IoT,” in International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018, pp. 1376–1383, Springer, 2019.
  39. J. Singh et al., “Fog computing: A taxonomy, systematic review, current trends and research challenges,” Journal of Parallel and Distributed Computing, vol. 157, pp. 56–85, 2021.
  40. W. Shi et al., “Edge computing: Vision and challenges,” IEEE Internet of Things journal, vol. 3, no. 5, pp. 637–646, 2016.
  41. G. K. Walia et al., “Ai-empowered fog/edge resource management for iot applications: A comprehensive review, research challenges and future perspectives,” IEEE Communications Surveys & Tutorials, vol. 26, no. 1, pp. 1–56, 2023.
  42. W. Z. Khan et al., “Edge computing: A survey,” Future Generation Computer Systems, vol. 97, pp. 219–235, 2019.
  43. E. Jonas et al., “Cloud programming simplified: A berkeley view on serverless computing,” arXiv preprint arXiv:1902.03383, 2019.
  44. H. B. Hassan et al., “Survey on serverless computing,” Journal of Cloud Computing, vol. 10, no. 1, pp. 1–29, 2021.
  45. A. Buzachis et al., “Modeling and emulation of an osmotic computing ecosystem using osmotictoolkit,” in Proceedings of the 2021 Australasian Computer Science Week Multiconference, pp. 1–9, 2021.
  46. B. Neha et al., “A systematic review on osmotic computing,” ACM Transactions on Internet of Things, vol. 3, no. 2, pp. 1–30, 2022.
  47. P. P. Ray, “An introduction to dew computing: definition, concept and implications,” IEEE Access, vol. 6, pp. 723–737, 2017.
  48. M. Gushev, “Dew computing architecture for cyber-physical systems and IoT,” Internet of things, vol. 11, p. 100186, 2020.
  49. Y. Qu et al., “A blockchained federated learning framework for cognitive computing in industry 4.0 networks,” IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2964–2973, 2020.
  50. T. Kovachy et al., “Quantum superposition at the half-metre scale,” Nature, vol. 528, no. 7583, pp. 530–533, 2015.
  51. S. S. Gill et al., “Quantum computing: A taxonomy, systematic review and future directions,” Software: Practice and Experience, vol. 52, no. 1, pp. 66–114, 2022.
  52. S. R. Gulliver et al., “Pervasive and standalone computing: the perceptual effects of variable multimedia quality,” International journal of human-computer studies, vol. 60, no. 5-6, pp. 640–665, 2004.
  53. S. Ravi et al., “Security in embedded systems: Design challenges,” ACM Transactions on Embedded Computing Systems (TECS), vol. 3, no. 3, pp. 461–491, 2004.
  54. L. De Micco et al., “A literature review on embedded systems,” IEEE Latin America Transactions, vol. 18, no. 02, pp. 188–205, 2019.
  55. P. J. Basford et al., “Performance analysis of single board computer clusters,” Future Generation Computer Systems, vol. 102, pp. 278–291, 2020.
  56. A. Pajankar, “Raspberry pi supercomputing and scientific programming,” Ashwin Pajankar, 2017.
  57. T. Hwu et al., “A self-driving robot using deep convolutional neural networks on neuromorphic hardware,” in 2017 International Joint Conference on Neural Networks (IJCNN), pp. 635–641, IEEE, 2017.
  58. A. A. Süzen et al., “Benchmark analysis of jetson tx2, jetson nano and raspberry pi using deep-cnn,” in 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–5, IEEE, 2020.
  59. A. Kumar et al., “Securing the future internet of things with post-quantum cryptography,” Security and Privacy, vol. 5, no. 2, p. e200, 2022.
  60. J. Ren et al., “A survey on end-edge-cloud orchestrated network computing paradigms: Transparent computing, mobile edge computing, fog computing, and cloudlet,” ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–36, 2019.
  61. C. Wang et al., “Integration of networking, caching, and computing in wireless systems: A survey, some research issues, and challenges,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 7–38, 2017.
  62. J. Z. Ahmadabadi et al., “Star-quake: A new operator in multi-objective gravitational search algorithm for task scheduling in iot based cloud-fog computing system,” IEEE Transactions on Consumer Electronics, 2023.
  63. M. Maray et al., “Computation offloading in mobile cloud computing and mobile edge computing: survey, taxonomy, and open issues,” Mobile Information Systems, vol. 2022, 2022.
  64. M. F. Bari et al., “On orchestrating virtual network functions,” in 2015 11th international conference on network and service management (CNSM), pp. 50–56, IEEE, 2015.
  65. Y. Cai et al., “Compute-and data-intensive networks: The key to the metaverse,” in 2022 1st International Conference on 6G Networking (6GNet), pp. 1–8, IEEE, 2022.
  66. E. Al-Masri et al., “Energy-efficient cooperative resource allocation and task scheduling for internet of things environments,” Internet of Things, vol. 23, p. 100832, 2023.
  67. M. Sriraghavendra et al., “Dosp: A deadline-aware dynamic service placement algorithm for workflow-oriented iot applications in fog-cloud computing environments,” Energy Conservation Solutions for Fog-Edge Computing Paradigms, pp. 21–47, 2022.
  68. P. Verma et al., “Fcmcps-covid: Ai propelled fog–cloud inspired scalable medical cyber-physical system, specific to coronavirus disease,” Internet of Things, vol. 23, p. 100828, 2023.
  69. F. Desai et al., “Healthcloud: A system for monitoring health status of heart patients using machine learning and cloud computing,” Internet of Things, vol. 17, p. 100485, 2022.
  70. S. Iftikhar et al., “Fogdlearner: A deep learning-based cardiac health diagnosis framework using fog computing,” in Proceedings of the 2022 Australasian Computer Science Week, pp. 136–144, ACM, 2022.
  71. S. S. Gill et al., “IoT based agriculture as a cloud and big data service: the beginning of digital india,” Journal of Organizational and End User Computing (JOEUC), vol. 29, no. 4, pp. 1–23, 2017.
  72. A. Sengupta et al., “Mobile edge computing based internet of agricultural things: a systematic review and future directions,” Mobile Edge Computing, pp. 415–441, 2021.
  73. S. Iftikhar et al., “Fog computing based router-distributor application for sustainable smart home,” in 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), pp. 1–5, IEEE, 2022.
  74. K. Bansal et al., “Deepbus: Machine learning based real time pothole detection system for smart transportation using iot,” Internet Technology Letters, vol. 3, no. 3, p. e156, 2020.
  75. S. Tuli et al., “ithermofog: Iot-fog based automatic thermal profile creation for cloud data centers using artificial intelligence techniques,” Internet Technology Letters, vol. 3, no. 5, p. e198, 2020.
  76. M. Singh et al., “Quantum artificial intelligence for the science of climate change,” in Artificial Intelligence, Machine Learning and Blockchain in Quantum Satellite, Drone and Network, pp. 199–207, CRC Press, 2022.
  77. M. Singh et al., “Quantifying covid-19 enforced global changes in atmospheric pollutants using cloud computing based remote sensing,” Remote Sensing Applications: Society and Environment, vol. 22, p. 100489, 2021.
  78. M. Stoyanova et al., “A survey on the internet of things (iot) forensics: challenges, approaches, and open issues,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1191–1221, 2020.
  79. N. Mansouri et al., “Cloud computing simulators: A comprehensive review,” Simulation Modelling Practice and Theory, vol. 104, p. 102144, 2020.
  80. S. Tuli et al., “Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments,” Future Generation Computer Systems, vol. 104, pp. 187–200, 2020.
  81. S. S. Gill et al., “Chatgpt: Vision and challenges,” Internet of Things and Cyber-Physical Systems, vol. 3, pp. 262–271, 2023.
  82. M. Vila et al., “Edge-to-cloud sensing and actuation semantics in the industrial Internet of Things,” Pervasive and Mobile Computing, vol. 87, p. 101699, Dec. 2022.
  83. D. Kreutz et al., “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.
  84. T. Mekki et al., “Software-defined networking in vehicular networks: A survey,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 10, p. e4265, 2022.
  85. J. Son et al., “A taxonomy of software-defined networking (sdn)-enabled cloud computing,” ACM computing surveys (CSUR), vol. 51, no. 3, pp. 1–36, 2018.
  86. L. Poutievski et al., “Jupiter evolving: transforming google’s datacenter network via optical circuit switches and software-defined networking,” in Proceedings of the ACM SIGCOMM 2022 Conference, pp. 66–85, 2022.
  87. A. Kumar et al., “A secure drone-to-drone communication and software defined drone network-enabled traffic monitoring system,” Simulation Modelling Practice and Theory, vol. 120, p. 102621, 2022.
  88. X. Wang et al., “Convergence of edge computing and deep learning: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869–904, 2020.
  89. J. Zhang et al., “Mobile edge intelligence and computing for the internet of vehicles,” Proceedings of the IEEE, vol. 108, no. 2, pp. 246–261, 2019.
  90. S. Chen et al., “Internet of things based smart grids supported by intelligent edge computing,” IEEE Access, vol. 7, pp. 74089–74102, 2019.
  91. V. C. Pujol et al., “Edge intelligence—research opportunities for distributed computing continuum systems,” IEEE Internet Computing, vol. 27, no. 4, pp. 53–74, 2023.
  92. R. Singh et al., “Edge ai: a survey,” Internet of Things and Cyber-Physical Systems, 2023.
  93. Y. Jia et al., “Flowguard: An intelligent edge defense mechanism against IoT DDoS attacks,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9552–9562, 2020.
  94. B. Yang et al., “Edge intelligence for autonomous driving in 6g wireless system: Design challenges and solutions,” IEEE Wireless Communications, vol. 28, no. 2, pp. 40–47, 2021.
  95. F. Liu et al., “Integrated sensing and communications: Toward dual-functional wireless networks for 6g and beyond,” IEEE journal on selected areas in communications, vol. 40, no. 6, pp. 1728–1767, 2022.
  96. M. Ishtiaq et al., “Edge computing in iot: A 6g perspective,” arXiv preprint arXiv:2111.08943, 2021.
  97. A. Kumar et al., “A drone-based networked system and methods for combating coronavirus disease (covid-19) pandemic,” Future Generation Computer Systems, vol. 115, pp. 1–19, 2021.
  98. Y. Shi et al., “Machine learning for large-scale optimization in 6g wireless networks,” IEEE Communications Surveys & Tutorials, 2023.
  99. A. Alkhateeb et al., “Real-time digital twins: Vision and research directions for 6G and beyond,” IEEE Communications Magazine, 2023.
  100. S. A. Ansar et al., “Intelligent Fog-IoT Networks with 6G endorsement: Foundations, applications, trends and challenges,” 6G Enabled Fog Computing in IoT: Applications and Opportunities, pp. 287–307, 2023.
  101. I. F. Akyildiz et al., “6G and beyond: The future of wireless communications systems,” IEEE Access, vol. 8, pp. 133995–134030, 2020.
  102. S. Ghafouri et al., “Mobile-kube: Mobility-aware and energy-efficient service orchestration on kubernetes edge servers,” in 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC), pp. 82–91, IEEE, 2022.
  103. H. Wu et al., “Energy-efficient decision making for mobile cloud offloading,” IEEE Transactions on Cloud Computing, vol. 8, no. 2, pp. 570–584, 2020.
  104. H. Wu et al., “Lyapunov-Guided Delay-Aware Energy Efficient Offloading in IIoT-MEC Systems,” IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp. 2117–2128, 2023.
  105. J. D. Owens et al., “A survey of general-purpose computation on graphics hardware,” Computer graphics forum, vol. 26, no. 1, pp. 80–113, 2007.
  106. American Mathematical Soc., 2005.
  107. D. Kimovski et al., “Beyond von neumann in the computing continuum: Architectures, applications, and future directions,” IEEE Internet Computing, 2023.
  108. R. Yang et al., “Integrated blockchain and edge computing systems: A survey, some research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1508–1532, 2019.
  109. S. H. Alsamhi et al., “Computing in the sky: A survey on intelligent ubiquitous computing for uav-assisted 6g networks and industry 4.0/5.0,” Drones, vol. 6, no. 7, p. 177, 2022.
  110. J. Chen et al., “Deep learning with edge computing: A review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.
  111. H. Singh et al., “Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions,” Simulation Modelling Practice and Theory, vol. 111, p. 102353, 2021.
  112. A. Botta et al., “Integration of cloud computing and internet of things: a survey,” Future generation computer systems, vol. 56, pp. 684–700, 2016.
  113. F. Cappello et al., “Computing on large-scale distributed systems: XtremWeb architecture, programming models, security, tests and convergence with grid,” Future generation computer systems, vol. 21, no. 3, pp. 417–437, 2005.
  114. D. Andrews et al., “Achieving programming model abstractions for reconfigurable computing,” IEEE transactions on very large scale integration (VLSI) systems, vol. 16, no. 1, pp. 34–44, 2007.
  115. J. C. Jackson et al., “Survey on programming models and environments for cluster, cloud, and grid computing that defends big data,” Procedia Computer Science, vol. 50, pp. 517–523, 2015.
  116. C. Cao et al., “A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters,” Journal of cleaner production, vol. 174, pp. 1422–1435, 2018.
  117. M. Butts et al., “A structural object programming model, architecture, chip and tools for reconfigurable computing,” in 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2007), pp. 55–64, IEEE, 2007.
  118. X. Shen et al., “Holistic network virtualization and pervasive network intelligence for 6g,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 1–30, 2021.
  119. S. Jin et al., “H-svm: Hardware-assisted secure virtual machines under a vulnerable hypervisor,” IEEE Transactions on Computers, vol. 64, no. 10, pp. 2833–2846, 2015.
  120. Y. Mansouri et al., “A review of edge computing: Features and resource virtualization,” Journal of Parallel and Distributed Computing, vol. 150, pp. 155–183, 2021.
  121. J. Zhang et al., “Performance analysis of 3d xpoint ssds in virtualized and non-virtualized environments,” in 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), pp. 1–10, IEEE, 2018.
  122. I. Alam et al., “A survey of network virtualization techniques for internet of things using sdn and nfv,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–40, 2020.
  123. Y. Xing et al., “Virtualization and cloud computing,” in Future Wireless Networks and Information Systems: Volume 1, pp. 305–312, Springer, 2012.
  124. A. Agache et al., “Firecracker: Lightweight virtualization for serverless applications,” in 17th USENIX symposium on networked systems design and implementation (NSDI 20), pp. 419–434, 2020.
  125. G. Blake et al., “A survey of multicore processors,” IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 26–37, 2009.
  126. D. Gizopoulos et al., “Architectures for online error detection and recovery in multicore processors,” in 2011 Design, Automation & Test in Europe, pp. 1–6, IEEE, 2011.
  127. R. Delgado et al., “New insights into the real-time performance of a multicore processor,” IEEE Access, vol. 8, pp. 186199–186211, 2020.
  128. M. Piattini et al., “Toward a quantum software engineering,” IT Professional, vol. 23, no. 1, pp. 62–66, 2021.
  129. E.-M. Arvanitou et al., “Software engineering practices for scientific software development: A systematic mapping study,” Journal of Systems and Software, vol. 172, p. 110848, 2021.
  130. R. R. Althar et al., “The realist approach for evaluation of computational intelligence in software engineering,” Innovations in Systems and Software Engineering, vol. 17, no. 1, pp. 17–27, 2021.
  131. M. De Stefano et al., “Software engineering for quantum programming: How far are we?,” Journal of Systems and Software, vol. 190, p. 111326, 2022.
  132. G. Sharma et al., “Applications of blockchain in automated heavy vehicles: Yesterday, today, and tomorrow,” in Autonomous and Connected Heavy Vehicle Technology, pp. 81–93, Elsevier, 2022.
  133. J. Al-Jaroodi et al., “Blockchain in industries: A survey,” IEEE Access, vol. 7, pp. 36500–36515, 2019.
  134. J. Doyle et al., “Blockchainbus: A lightweight framework for secure virtual machine migration in cloud federations using blockchain,” Security and Privacy, vol. 5, no. 2, p. e197, 2022.
  135. L. Jurado Perez et al., “Simulation of scalability in cloud-based iot reactive systems leveraged on a wsan simulator and cloud computing technologies,” Applied Sciences, vol. 11, no. 4, p. 1804, 2021.
  136. R. Buyya et al., “A strategy for advancing research and impact in new computing paradigms,” in Green Mobile Cloud Computing, pp. 297–308, Springer, 2022.
  137. C. Brady et al., “All roads lead to computing: Making, participatory simulations, and social computing as pathways to computer science,” IEEE Transactions on Education, vol. 60, no. 1, pp. 59–66, 2016.
  138. O. Ferraz et al., “A survey on high-throughput non-binary ldpc decoders: Asic, fpga, and gpu architectures,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 524–556, 2021.
  139. N. P. Jouppi et al., “A domain-specific architecture for deep neural networks,” Communications of the ACM, vol. 61, no. 9, pp. 50–59, 2018.
  140. J. Cong et al., “Customizable computing—from single chip to datacenters,” Proceedings of the IEEE, vol. 107, no. 1, pp. 185–203, 2018.
  141. H. Ji et al., “Magnetic reconnection in the era of exascale computing and multiscale experiments,” Nature Reviews Physics, vol. 4, no. 4, pp. 263–282, 2022.
  142. S. Heldens et al., “The landscape of exascale research: A data-driven literature analysis,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–43, 2020.
  143. Y. Kim et al., “Evidence for the utility of quantum computing before fault tolerance,” Nature, vol. 618, no. 7965, pp. 500–505, 2023.
  144. H. Anzt et al., “Preparing sparse solvers for exascale computing,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2166, p. 20190053, 2020.
  145. F. Zangeneh-Nejad et al., “Analogue computing with metamaterials,” Nature Reviews Materials, vol. 6, no. 3, pp. 207–225, 2021.
  146. W. Zhang et al., “Neuro-inspired computing chips,” Nature Electronics, vol. 3, no. 7, pp. 371–382, 2020.
  147. M. Zhao et al., “Reliability of analog resistive switching memory for neuromorphic computing,” Applied Physics Reviews, vol. 7, no. 1, 2020.
  148. A. Zador et al., “Catalyzing next-generation artificial intelligence through neuroai,” Nature communications, vol. 14, no. 1, p. 1597, 2023.
  149. C. D. Schuman et al., “Opportunities for neuromorphic computing algorithms and applications,” Nature Computational Science, vol. 2, no. 1, pp. 10–19, 2022.
  150. F. C. Morabito et al., “Advances in ai, neural networks, and brain computing: An introduction,” in Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 1–8, Elsevier, 2024.
  151. V. Rosenfeld et al., “Query processing on heterogeneous cpu/gpu systems,” ACM Computing Surveys (CSUR), vol. 55, no. 1, pp. 1–38, 2022.
  152. J. Sanders et al., CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley Professional, 2010.
  153. S. Tuli et al., “Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing,” Internet of things, vol. 11, p. 100222, 2020.
  154. L. E. Lwakatare et al., “Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions,” Information and software technology, vol. 127, p. 106368, 2020.
  155. M. Wang et al., “A survey on large-scale machine learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 6, pp. 2574–2594, 2020.
  156. M. N. Angenent et al., “Large-scale machine learning for business sector prediction,” in Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 1143–1146, 2020.
  157. R. Buyya et al., “Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.
  158. S. U. Malik et al., “Effort: Energy efficient framework for offload communication in mobile cloud computing,” Software: Practice and Experience, vol. 51, no. 9, pp. 1896–1909, 2021.
  159. X. Jin et al., “A survey of research on computation offloading in mobile cloud computing,” Wireless Networks, vol. 28, no. 4, pp. 1563–1585, 2022.
  160. P. Patros et al., “Toward sustainable serverless computing,” IEEE Internet Computing, vol. 25, no. 6, pp. 42–50, 2021.
  161. M. Masdari et al., “Green cloud computing using proactive virtual machine placement: challenges and issues,” Journal of Grid Computing, vol. 18, no. 4, pp. 727–759, 2020.
  162. S. S. Gill et al., “A taxonomy and future directions for sustainable cloud computing: 360 degree view,” ACM Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–33, 2018.
  163. W. Shu et al., “Research on strong agile response task scheduling optimization enhancement with optimal resource usage in green cloud computing,” Future Generation Computer Systems, vol. 124, pp. 12–20, 2021.
  164. Q. Zhou et al., “Energy efficient algorithms based on vm consolidation for cloud computing: comparisons and evaluations,” in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 489–498, IEEE, 2020.
  165. R. F. Mansour et al., “Design of cultural emperor penguin optimizer for energy-efficient resource scheduling in green cloud computing environment,” Cluster Computing, vol. 26, no. 1, pp. 575–586, 2023.
  166. M. Singh et al., “Dynamic shift from cloud computing to industry 4.0: Eco-friendly choice or climate change threat,” in IoT-based Intelligent Modelling for Environmental and Ecological Engineering: IoT Next Generation EcoAgro Systems, pp. 275–293, Springer, 2021.
  167. W. Zeng et al., “Research on cloud storage architecture and key technologies,” in Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 1044–1048, 2009.
  168. M. Hota et al., “Leveraging cloud-native microservices architecture for high performance real-time intra-day trading: A tutorial,” 6G Enabled Fog Computing in IoT: Applications and Opportunities, pp. 111–129, 2023.
  169. M. Kumar et al., “Qos-aware resource scheduling using whale optimization algorithm for microservice applications,” Software: Practice and Experience, 2023.
  170. J. Ghofrani et al., “Challenges of microservices architecture: A survey on the state of the practice.,” ZEUS, vol. 2018, pp. 1–8, 2018.
  171. C. Song et al., “Chainsformer: A chain latency-aware resource provisioning approach for microservices cluster,” in International Conference on Service-Oriented Computing, pp. 197–211, Springer, 2023.
  172. F. Al-Doghman and Mothers, “AI-enabled secure microservices in edge computing: Opportunities and challenges,” IEEE Transactions on Services Computing, 2022.
  173. M. Xu et al., “Coscal: Multifaceted scaling of microservices with reinforcement learning,” IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 3995–4009, 2022.
  174. O. Bentaleb et al., “Containerization technologies: Taxonomies, applications and challenges,” The Journal of Supercomputing, vol. 78, no. 1, pp. 1144–1181, 2022.
  175. A. Barbalace et al., “Edge computing: The case for heterogeneous-isa container migration,” in Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 73–87, 2020.
  176. M. Golec et al., “Biosec: A biometric authentication framework for secure and private communication among edge devices in IoT and industry 4.0,” IEEE Consumer Electronics Magazine, vol. 11, no. 2, pp. 51–56, 2020.
  177. V. Struhár et al., “Real-time containers: A survey,” in 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
  178. E. Casalicchio et al., “The state-of-the-art in container technologies: Application, orchestration and security,” Concurrency and Computation: Practice and Experience, vol. 32, no. 17, p. e5668, 2020.
  179. Z. Zhong et al., “A cost-efficient container orchestration strategy in kubernetes-based cloud computing infrastructures with heterogeneous resources,” ACM Transactions on Internet Technology (TOIT), vol. 20, no. 2, pp. 1–24, 2020.
  180. V. Mallikarjunaradhya et al., “An overview of the strategic advantages of AI-powered threat intelligence in the cloud,” Journal of Science & Technology, vol. 4, no. 4, pp. 1–12, 2023.
  181. P. Patros et al., “Investigating resource interference and scaling on multitenant paas clouds,” in Proceedings of the 26th Annual International Conference on Computer Science and Software Engineering, pp. 166–177, 2016.
  182. S. Kounev et al., “Toward a definition for serverless computing,” Leibniz-Zentrum fur Informatik, 2021.
  183. H. Shafiei et al., “Serverless computing: a survey of opportunities, challenges, and applications,” ACM Computing Surveys, vol. 54, no. 11s, pp. 1–32, 2022.
  184. M. Golec et al., “Qos analysis for serverless computing using machine learning,” in Serverless Computing: Principles and Paradigms, pp. 175–192, Springer, 2023.
  185. M. S. Aslanpour et al., “Serverless edge computing: vision and challenges,” in Proceedings of the 2021 Australasian Computer Science Week Multiconference, pp. 1–10, 2021.
  186. Y. Li et al., “Serverless computing: state-of-the-art, challenges and opportunities,” IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 1522–1539, 2022.
  187. M. Kumar et al., “Ai-based sustainable and intelligent offloading framework for iiot in collaborative cloud-fog environments,” IEEE Transactions on Consumer Electronics, 2023.
  188. S. Iftikhar et al., “Tesco: Multiple simulations based ai-augmented fog computing for qos optimization,” in 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), pp. 2092–2099, IEEE, 2022.
  189. F. Firouzi et al., “The convergence and interplay of edge, fog, and cloud in the ai-driven internet of things (iot),” Information Systems, vol. 107, p. 101840, 2022.
  190. Z. Cao et al., “Toward a systematic survey for carbon neutral data centers,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 895–936, 2022.
  191. M. A. B. Siddik et al., “The environmental footprint of data centers in the united states,” Environmental Research Letters, vol. 16, no. 6, p. 064017, 2021.
  192. A. Senthilkumar et al., “Enhancement of r600a vapour compression refrigeration system with mwcnt/tio2 hybrid nano lubricants for net zero emissions building,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103055, 2023.
  193. T. A. Kurniawan et al., “Decarbonization in waste recycling industry using digitalization to promote net-zero emissions and its implications on sustainability,” Journal of environmental management, vol. 338, p. 117765, 2023.
  194. R. Wilkinson et al., “Environmental impacts of earth observation data in the constellation and cloud computing era,” Science of the Total Environment, vol. 909, p. 168584, 2024.
  195. A. K. Bhardwaj et al., “Heart: Unrelated parallel machines problem with precedence constraints for task scheduling in cloud computing using heuristic and meta-heuristic algorithms,” Software: Practice and Experience, vol. 50, no. 12, pp. 2231–2251, 2020.
  196. G. C. Fox et al., Parallel computing works! Elsevier, 2014.
  197. H. Wu et al., “A multi-dimensional parametric study of variability in multi-phase flow dynamics during geologic co2 sequestration accelerated with machine learning,” Applied Energy, vol. 287, p. 116580, 2021.
  198. S. S. Gill, “Quantum and blockchain based serverless edge computing: A vision, model, new trends and future directions,” Internet Technology Letters, p. e275, 2021.
  199. Z. M. Nayeri et al., “Application placement in fog computing with AI approach: Taxonomy and a state of the art survey,” Journal of Network and Computer Applications, vol. 185, p. 103078, 2021.
  200. P. Patros et al., “Rural ai: Serverless-powered federated learning for remote applications,” IEEE Internet Computing, vol. 27, no. 2, pp. 28–34, 2023.
  201. R. Mahmud et al., “Application management in fog computing environments: A taxonomy, review and future directions,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–43, 2020.
  202. A. Ruggeri et al., “An innovative blockchain-based orchestrator for osmotic computing,” Journal of Grid Computing, vol. 20, pp. 1–17, 2022.
  203. S. S. Gill et al., “Secure: Self-protection approach in cloud resource management,” IEEE Cloud Computing, vol. 5, no. 1, pp. 60–72, 2018.
  204. I. Ahammad et al., “A review on cloud, fog, roof, and dew computing: IoT perspective,” International Journal of Cloud Applications and Computing (IJCAC), vol. 11, no. 4, pp. 14–41, 2021.
  205. Y. Mao et al., “A survey on mobile edge computing: The communication perspective,” IEEE communications surveys & tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.
  206. Q. Luo et al., “Resource scheduling in edge computing: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2131–2165, 2021.
  207. K. Cao et al., “An overview on edge computing research,” IEEE Access, vol. 8, pp. 85714–85728, 2020.
  208. N. Kotsehub et al., “Flox: Federated learning with faas at the edge,” in 2022 IEEE 18th International Conference on e-Science (e-Science), pp. 11–20, 2022.
  209. O. Almurshed et al., “Adaptive edge-cloud environments for rural ai,” in 2022 IEEE International Conference on Services Computing (SCC), pp. 74–83, 2022.
  210. N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.
  211. J. Du et al., “Computation energy efficiency maximization for noma-based and wireless-powered mobile edge computing with backscatter communication,” IEEE Transactions on Mobile Computing, pp. 1–16, 2023.
  212. P. Mach et al., “Mobile edge computing: A survey on architecture and computation offloading,” IEEE communications surveys & tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.
  213. Y. Siriwardhana et al., “A survey on mobile augmented reality with 5g mobile edge computing: Architectures, applications, and technical aspects,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021.
  214. M. Golec et al., “BlockFaaS: Blockchain-enabled Serverless Computing Framework for AI-driven IoT Healthcare Applications,” Journal of Grid Computing, vol. 21, no. 4, p. 63, 2023.
  215. Z. Zheng et al., “Blockchain challenges and opportunities: A survey,” International Journal of Web and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.
  216. K. Gai et al., “Blockchain meets cloud computing: A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 2009–2030, 2020.
  217. S. A. Moqurrab et al., “A deep learning-based privacy-preserving model for smart healthcare in internet of medical things using fog computing,” Wireless Personal Communications, vol. 126, no. 3, pp. 2379–2401, 2022.
  218. M. Golec et al., “Aiblock: Blockchain based lightweight framework for serverless computing using ai,” in 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 886–892, IEEE, 2022.
  219. M. Kumar et al., “Blockchain inspired secure and reliable data exchange architecture for cyber-physical healthcare system 4.0,” Internet of Things and Cyber-Physical Systems, 2023.
  220. L. Li et al., “A review of applications in federated learning,” Computers & Industrial Engineering, vol. 149, p. 106854, 2020.
  221. J. Yang et al., “A federated learning attack method based on edge collaboration via cloud,” Software: Practice and Experience, 2022.
  222. C. Zhang et al., “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, 2021.
  223. W. Jiang et al., “Federated split learning for sequential data in satellite–terrestrial integrated networks,” Information Fusion, vol. 103, p. 102141, Mar. 2024.
  224. P. Kairouz et al., “Advances and open problems in federated learning,” Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
  225. G. Wu et al., “Privacy-preserving offloading scheme in multi-access mobile edge computing based on madrl,” Journal of Parallel and Distributed Computing, vol. 183, p. 104775, 2024.
  226. M. S. Ferdous et al., “A survey of consensus algorithms in public blockchain systems for crypto-currencies,” Journal of Network and Computer Applications, vol. 182, p. 103035, 2021.
  227. A. Manimuthu et al., “A literature review on Bitcoin: Transformation of crypto currency into a global phenomenon,” IEEE Engineering Management Review, vol. 47, no. 1, pp. 28–35, 2019.
  228. J. Xu et al., “A survey of blockchain consensus protocols,” ACM Computing Surveys, 2023.
  229. X. Wang et al., “Blockchain intelligence for internet of vehicles: Challenges and solutions,” IEEE Communications Surveys & Tutorials, 2023.
  230. U. Rahardja et al., “Good, bad and dark bitcoin: a systematic literature review,” Aptisi Transactions on Technopreneurship (ATT), vol. 3, no. 2, pp. 115–119, 2021.
  231. M. Golec et al., “IFaaSBus: A security-and privacy-based lightweight framework for serverless computing using IoT and machine learning,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3522–3529, 2021.
  232. G. Qu et al., “Chainfl: A simulation platform for joint federated learning and blockchain in edge/cloud computing environments,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3572–3581, 2022.
  233. M. Golec et al., “Healthfaas: Ai based smart healthcare system for heart patients using serverless computing,” IEEE Internet of Things Journal, 2023.
  234. S. Svorobej et al., “Orchestration from the cloud to the edge,” The Cloud-to-Thing Continuum: Opportunities and Challenges in Cloud, Fog and Edge Computing, pp. 61–77, 2020.
  235. W. K. Härdle et al., “Understanding cryptocurrencies,” 2020.
  236. P. Weichbroth et al., “Security of cryptocurrencies: A view on the state-of-the-art research and current developments,” Sensors, vol. 23, no. 6, p. 3155, 2023.
  237. A. Schweizer et al., “To what extent will blockchain drive the machine economy? perspectives from a prospective study,” IEEE Transactions on Engineering Management, vol. 67, no. 4, pp. 1169–1183, 2020.
  238. M. Khan et al., “A review of distributed ledger technologies in the machine economy: challenges and opportunities in industry and research,” Procedia CIRP, vol. 107, pp. 1168–1173, 2022.
  239. S. Dustdar et al., “On distributed computing continuum systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 4092–4105, 2022.
  240. P. K. Donta et al., “Exploring the potential of distributed computing continuum systems,” Computers, vol. 12, no. 10, p. 198, 2023.
  241. A. Morichetta et al., “A roadmap on learning and reasoning for distributed computing continuum ecosystems,” in IEEE International Conference on Edge Computing (EDGE), pp. 25–31, Institute of Electrical and Electronics Engineers (IEEE), Feb. 2021.
  242. C. J. Beasley et al., “A new look at simultaneous sources,” in Seg technical program expanded abstracts 1998, pp. 133–135, Society of Exploration Geophysicists, 1998.
  243. S. Aminizadeh et al., “The applications of machine learning techniques in medical data processing based on distributed computing and the internet of things,” Computer Methods and Programs in Biomedicine, p. 107745, 2023.
  244. L. Petrou et al., “The first family of application-specific integrated circuits for programmable and reconfigurable metasurfaces,” Scientific reports, vol. 12, no. 1, p. 5826, 2022.
  245. K. E. Murray et al., “Vtr 8: High-performance cad and customizable fpga architecture modelling,” ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 13, no. 2, pp. 1–55, 2020.
  246. P. Hitzler et al., Neuro-symbolic artificial intelligence: The state of the art. IOS Press, 2022.
  247. M. Gaur et al., “Knowledge-infused learning: A sweet spot in neuro-symbolic ai,” IEEE Internet Computing, vol. 26, no. 4, pp. 5–11, 2022.
  248. J. Du et al., “Computation energy efficiency maximization for intelligent reflective surface-aided wireless powered mobile edge computing,” IEEE Transactions on Sustainable Computing, 2023.
  249. J. Cuadrado et al., “Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments,” Multibody system dynamics, vol. 4, pp. 55–73, 2000.
  250. Y. Zhang et al., “Transparent computing: Spatio-temporal extension on von neumann architecture for cloud services,” Tsinghua Science and Technology, vol. 18, no. 1, pp. 10–21, 2013.
  251. Q. Jiang et al., “Adaptive scheduling of stochastic task sequence for energy-efficient mobile cloud computing,” IEEE Systems Journal, vol. 13, no. 3, pp. 3022–3025, 2019.
  252. D. Bufistov et al., “A general model for performance optimization of sequential systems,” in 2007 IEEE/ACM International Conference on Computer-Aided Design, pp. 362–369, IEEE, 2007.
  253. M. S. Aslanpour et al., “Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for future research,” Internet of Things, vol. 12, p. 100273, 2020.
  254. A. Singh et al., “Quantum internet—applications, functionalities, enabling technologies, challenges, and research directions,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2218–2247, 2021.
  255. N. P. De Leon et al., “Materials challenges and opportunities for quantum computing hardware,” Science, vol. 372, no. 6539, p. eabb2823, 2021.
  256. K. N. Smith et al., “Scaling superconducting quantum computers with chiplet architectures,” in 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1092–1109, IEEE, 2022.
  257. R. F. Spivey et al., “High-stability cryogenic system for quantum computing with compact packaged ion traps,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–11, 2021.
  258. A. R. Nandhakumar et al., “EdgeAISim: A Toolkit for Simulation and Modelling of AI Models in Edge Computing Environments,” Measurement: Sensors, 2023.
  259. M. Xue et al., “Ddpqn: An efficient dnn offloading strategy in local-edge-cloud collaborative environments,” IEEE Transactions on Services Computing, vol. 15, no. 2, pp. 640–655, 2022.
  260. Y.-L. Lee et al., “Techology trend of edge AI,” in 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–2, IEEE, 2018.
  261. A. Y. Ding et al., “Roadmap for edge ai: A dagstuhl perspective,” 2022.
  262. D. Murugesan et al., “Comparison of biologically inspired algorithm with socio-inspired technique on load frequency control of multi-source single-area power system,” in Applied Genetic Algorithm and Its Variants: Case Studies and New Developments, pp. 185–208, Springer, 2023.
  263. A. K. Kar, “Bio inspired computing–a review of algorithms and scope of applications,” Expert Systems with Applications, vol. 59, pp. 20–32, 2016.
  264. M. Xu et al., “esdnn: deep neural network based multivariate workload prediction in cloud computing environments,” ACM Transactions on Internet Technology (TOIT), vol. 22, no. 3, pp. 1–24, 2022.
  265. B. Denkena et al., “Reprint of: Gentelligent processes in biologically inspired manufacturing,” CIRP Journal of Manufacturing Science and Technology, vol. 34, pp. 105–118, 2021.
  266. R. Dwivedi et al., “Explainable AI (XAI): Core ideas, techniques, and solutions,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–33, 2023.
  267. A. B. Tosun et al., “Histomapr™: An explainable AI (XAI) platform for computational pathology solutions,” in Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges, pp. 204–227, Springer, 2020.
  268. A. B. Arrieta et al., “Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI,” Information fusion, vol. 58, pp. 82–115, 2020.
  269. P. Kochovski et al., “Trust management in a blockchain based fog computing platform with trustless smart oracles,” Future Generation Computer Systems, vol. 101, pp. 747–759, 2019.
  270. K. Shkembi et al., “Semantic web and blockchain technologies: Convergence, challenges and research trends,” Journal of Web Semantics, vol. 79, p. 100809, 2023.
  271. A. D. Córcoles et al., “Challenges and opportunities of near-term quantum computing systems,” Proceedings of the IEEE, vol. 108, no. 8, pp. 1338–1352, 2019.
  272. K. C. Seto et al., “From low-to net-zero carbon cities: The next global agenda,” Annual review of environment and resources, vol. 46, pp. 377–415, 2021.
  273. G. Aceto et al., “A survey on information and communication technologies for industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3467–3501, 2019.
  274. G. Aceto et al., “Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0,” Journal of Industrial Information Integration, vol. 18, p. 100129, 2020.
  275. Y. K. Teoh et al., “Iot and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning,” IEEE Internet of Things Journal, 2021.
  276. T. Zheng et al., “The applications of industry 4.0 technologies in manufacturing context: a systematic literature review,” International Journal of Production Research, vol. 59, no. 6, pp. 1922–1954, 2021.
  277. W. Yu et al., “Energy digital twin technology for industrial energy management: Classification, challenges and future,” Renewable and Sustainable Energy Reviews, vol. 161, p. 112407, 2022.
  278. S. Mihai et al., “Digital twins: A survey on enabling technologies, challenges, trends and future prospects,” IEEE Communications Surveys & Tutorials, 2022.
  279. Y. Wang et al., “A survey on digital twins: architecture, enabling technologies, security and privacy, and future prospects,” IEEE Internet of Things Journal, 2023.
  280. M. Kor et al., “An investigation for integration of deep learning and digital twins towards construction 4.0,” Smart and Sustainable Built Environment, vol. 12, no. 3, pp. 461–487, 2023.
  281. S. Singh et al., “Qos-aware autonomic resource management in cloud computing: a systematic review,” ACM Computing Surveys (CSUR), vol. 48, no. 3, pp. 1–46, 2015.
  282. A. Morichetta et al., “Demystifying deep learning in predictive monitoring for cloud-native SLOs,” in 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 1–11, July 2023. ISSN: 2159-6190.
  283. S. A. Wright, “Performance modeling, benchmarking and simulation of high performance computing systems,” 2019.
  284. H. Materwala et al., “Qos-sla-aware adaptive genetic algorithm for multi-request offloading in integrated edge-cloud computing in internet of vehicles,” Vehicular Communications, vol. 43, p. 100654, 2023.
  285. Y. Sharma et al., “Sla management in intent-driven service management systems: A taxonomy and future directions,” ACM Computing Surveys, 2023.
  286. S. Khan et al., “Guaranteeing end-to-end qos provisioning in soa based sdn architecture: A survey and open issues,” Future Generation Computer Systems, vol. 119, pp. 176–187, 2021.
  287. S. Dilek et al., “QoS-aware IoT networks and protocols: A comprehensive survey,” International Journal of Communication Systems, vol. 35, no. 10, p. e5156, 2022.
  288. V. C. Pujol et al., “Towards a Prime Directive of SLOs,” in 2023 IEEE International Conference on Software Services Engineering (SSE), pp. 61–70, July 2023.
  289. P. Patros et al., “Slo request modeling, reordering and scaling,” in Proceedings of the 27th annual international conference on computer science and software engineering, pp. 180–191, 2017.
  290. S. Singh et al., “The journey of qos-aware autonomic cloud computing,” IT Professional, vol. 19, no. 2, pp. 42–49, 2017.
  291. P. o. Patros, “Investigating the effect of garbage collection on service level objectives of clouds,” in 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 633–634, IEEE, 2017.
  292. X. Zeng et al., “Sla management for big data analytical applications in clouds: A taxonomy study,” ACM Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–40, 2020.
  293. C. Qu et al., “Auto-scaling web applications in clouds: A taxonomy and survey,” ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–33, 2018.
  294. T. Lorido-Botran et al., “A review of auto-scaling techniques for elastic applications in cloud environments,” Journal of grid computing, vol. 12, pp. 559–592, 2014.
  295. P. Singh et al., “Rhas: robust hybrid auto-scaling for web applications in cloud computing,” Cluster Computing, vol. 24, no. 2, pp. 717–737, 2021.
  296. T. Heinze et al., “Auto-scaling techniques for elastic data stream processing,” in Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, pp. 318–321, 2014.
  297. S. S. Gill et al., “Holistic resource management for sustainable and reliable cloud computing: An innovative solution to global challenge,” Journal of Systems and Software, vol. 155, pp. 104–129, 2019.
  298. S. Bharany et al., “Energy efficient fault tolerance techniques in green cloud computing: A systematic survey and taxonomy,” Sustainable Energy Technologies and Assessments, vol. 53, p. 102613, 2022.
  299. S. S. Gill et al., “Failure management for reliable cloud computing: a taxonomy, model, and future directions,” Computing in Science & Engineering, vol. 22, no. 3, pp. 52–63, 2018.
  300. S. S. Gill et al., “Tails in the cloud: a survey and taxonomy of straggler management within large-scale cloud data centres,” The Journal of Supercomputing, vol. 76, pp. 10050–10089, 2020.
  301. S. S. Gill, “A manifesto for modern fog and edge computing: Vision, new paradigms, opportunities, and future directions,” in Operationalizing Multi-Cloud Environments: Technologies, Tools and Use Cases, pp. 237–253, Springer, 2021.
  302. A. Katal et al., “Energy efficiency in cloud computing data centers: a survey on software technologies,” Cluster Computing, vol. 26, no. 3, pp. 1845–1875, 2023.
  303. E. Masanet et al., “Recalibrating global data center energy-use estimates,” Science, vol. 367, no. 6481, pp. 984–986, 2020.
  304. S. Iftikhar et al., “Hunterplus: AI based energy-efficient task scheduling for cloud–fog computing environments,” Internet of Things, vol. 21, p. 100667, 2023.
  305. S. Tuli et al., “HUNTER: AI based holistic resource management for sustainable cloud computing,” Journal of Systems and Software, vol. 184, p. 111124, 2022.
  306. T. Schneider et al., “Harnessing ai and computing to advance climate modelling and prediction,” Nature Climate Change, vol. 13, no. 9, pp. 887–889, 2023.
  307. M. Hartmann et al., “Edge computing in smart health care systems: Review, challenges, and research directions,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 3, p. e3710, 2022.
  308. H. J. Baek et al., “Enhancing the usability of brain-computer interface systems,” Computational intelligence and neuroscience, vol. 2019, 2019.
  309. M. H. Miraz et al., “Adaptive user interfaces and universal usability through plasticity of user interface design,” Computer Science Review, vol. 40, p. 100363, 2021.
  310. J. Diaz-de Arcaya et al., “A joint study of the challenges, opportunities, and roadmap of mlops and aiops: A systematic survey,” ACM Computing Surveys, vol. 56, no. 4, pp. 1–30, 2023.
  311. I. Celik, “Exploring the determinants of artificial intelligence (ai) literacy: Digital divide, computational thinking, cognitive absorption,” Telematics and Informatics, vol. 83, p. 102026, 2023.
  312. S. S. Gill et al., “Transformative effects of ChatGPT on modern education: Emerging Era of AI chatbots,” Internet of Things and Cyber-Physical Systems, vol. 4, pp. 19–23, 2024.
  313. C. Le Roux et al., “Can cloud computing bridge the digital divide in south african secondary education?,” Information development, vol. 27, no. 2, pp. 109–116, 2011.
  314. C. G. M. Arce et al., “Optimizing business performance: Marketing strategies for small and medium businesses using artificial intelligence tools,” Migration Letters, vol. 21, no. S1, pp. 193–201, 2024.
  315. J. Qadir et al., “Toward accountable human-centered ai: rationale and promising directions,” Journal of Information, Communication and Ethics in Society, vol. 20, no. 2, pp. 329–342, 2022.
  316. L. Munn, “The uselessness of AI ethics,” AI and Ethics, vol. 3, no. 3, pp. 869–877, 2023.
  317. V. Scuotto et al., “The digital humanism era triggered by individual creativity,” Journal of Business Research, vol. 158, p. 113709, 2023.
  318. J. Schaap et al., “‘gods in world of warcraft exist’: Religious reflexivity and the quest for meaning in online computer games,” New Media & Society, vol. 19, no. 11, pp. 1744–1760, 2017.
  319. D. Magni et al., “Digital humanism and artificial intelligence: the role of emotions beyond the human–machine interaction in society 5.0,” Journal of Management History, 2023.
  320. Q. Yu et al., “Lagrange coded computing: Optimal design for resiliency, security, and privacy,” in The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1215–1225, PMLR, 2019.
  321. F. O. Olowononi et al., “Resilient machine learning for networked cyber physical systems: A survey for machine learning security to securing machine learning for cps,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 524–552, 2020.
  322. Z. Liu et al., “Efficient dropout-resilient aggregation for privacy-preserving machine learning,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 1839–1854, 2022.
  323. J. K. Samriya et al., “Secured data offloading using reinforcement learning and markov decision process in mobile edge computing,” International Journal of Network Management, vol. 33, no. 5, p. e2243, 2023.
  324. I. Ullah et al., “Privacy preserving large language models: Chatgpt case study based vision and framework,” arXiv preprint arXiv:2310.12523, 2023.
  325. H. Kim et al., “Resilient authentication and authorization for the internet of things (iot) using edge computing,” ACM Transactions on Internet of Things, vol. 1, no. 1, pp. 1–27, 2020.
  326. C. Delacour et al., “Energy-performance assessment of oscillatory neural networks based on vo _⁢2_2\_2_ 2 devices for future edge ai computing,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  327. Z. Quan et al., “A historical review on learning with technology: From computers to smartphones,” in Encyclopedia of Information Science and Technology, Sixth Edition, pp. 1–21, IGI Global, 2025.
  328. A. Mijuskovic et al., “Resource management techniques for cloud/fog and edge computing: An evaluation framework and classification,” Sensors, vol. 21, no. 5, p. 1832, 2021.
  329. S. Singh et al., “A survey on resource scheduling in cloud computing: Issues and challenges,” Journal of grid computing, vol. 14, pp. 217–264, 2016.
  330. C.-H. Hong et al., “Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.
  331. B. Jamil et al., “Resource allocation and task scheduling in fog computing and internet of everything environments: A taxonomy, review, and future directions,” ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–38, 2022.
  332. A. Raju et al., “A comparative study of spark schedulers’ performance,” in 2019 4th international conference on computational systems and information technology for sustainable solution (CSITSS), pp. 1–5, IEEE, 2019.
  333. S. Henning et al., “Benchmarking scalability of stream processing frameworks deployed as microservices in the cloud,” Journal of Systems and Software, vol. 208, p. 111879, 2024.
  334. J. Feng et al., “Heterogeneous computation and resource allocation for wireless powered federated edge learning systems,” IEEE Transactions on Communications, vol. 70, no. 5, pp. 3220–3233, 2022.
  335. A. Garofalo et al., “A heterogeneous in-memory computing cluster for flexible end-to-end inference of real-world deep neural networks,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 12, no. 2, pp. 422–435, 2022.
  336. H. Wu et al., “Collaborate edge and cloud computing with distributed deep learning for smart city internet of things,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8099–8110, 2020.
  337. V. Kumar, “Digital enablers,” in The Economic Value of Digital Disruption: A Holistic Assessment for CXOs, pp. 1–110, Springer, 2023.
  338. K. Sha et al., “A survey of edge computing-based designs for IoT security,” Digital Communications and Networks, vol. 6, no. 2, pp. 195–202, 2020.
  339. J. B. Sequeiros et al., “Attack and system modeling applied to IoT, cloud, and mobile ecosystems: Embedding security by design,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–32, 2020.
  340. A. Kaur et al., “The future of cloud computing: opportunities, challenges and research trends,” in 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) I-SMAC, pp. 213–219, IEEE, 2018.
  341. A. Sebastian et al., “Memory devices and applications for in-memory computing,” Nature nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.
  342. K. Vu et al., “Ict as a driver of economic growth: A survey of the literature and directions for future research,” Telecommunications Policy, vol. 44, no. 2, p. 101922, 2020.
  343. L. Tesfatsion, “Agent-based computational economics: Overview and brief history,” Artificial Intelligence, Learning and Computation in Economics and Finance, pp. 41–58, 2023.
  344. C. Vairetti et al., “Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making,” European Journal of Operational Research, vol. 312, no. 3, pp. 1108–1118, 2024.
  345. A. Jobin et al., “The global landscape of AI ethics guidelines,” Nature machine intelligence, vol. 1, no. 9, pp. 389–399, 2019.
  346. R. H. Hariri et al., “Uncertainty in big data analytics: survey, opportunities, and challenges,” Journal of Big Data, vol. 6, no. 1, pp. 1–16, 2019.
  347. L. Cao, “Data science: a comprehensive overview,” ACM Computing Surveys (CSUR), vol. 50, no. 3, pp. 1–42, 2017.
  348. B. K. Daniel, “Big data and data science: A critical review of issues for educational research,” British Journal of Educational Technology, vol. 50, no. 1, pp. 101–113, 2019.
  349. P. K. Donta et al., “Governance and sustainability of distributed continuum systems: a big data approach,” Journal of Big Data, vol. 10, no. 1, pp. 1–31, 2023.
  350. M. H. ur Rehman et al., “The role of big data analytics in industrial internet of things,” Future Generation Computer Systems, vol. 99, pp. 247–259, 2019.
Citations (62)

Summary

We haven't generated a summary for this paper yet.