Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image denoising and model-independent parameterization for improving IVIM MRI (2401.02394v1)

Published 4 Jan 2024 in physics.med-ph and eess.IV

Abstract: Variability of IVIM parameters throughout the literature is a long-standing issue, and perfusion-related parameters are difficult to interpret. We demonstrate for improving the analysis of intravoxel incoherent motion imaging (IVIM) magnetic resonance (MR) images, using image denoising and a quantitative approach that does not require imposing specific exponential models. IVIM images were acquired for 13 head-and-neck patients prior to radiotherapy. Of these, 5 patients also had post-radiotherapy scans acquired. Image quality was improved prior to parameter fitting via denoising. For this, we employed neural blind deconvolution, a method of undertaking the ill-posed mathematical problem of blind deconvolution using neural networks. The signal decay curve was then quantified in terms of area under the curve ($AUC$) parameters. Denoised images were assessed in terms of blind image quality metrics, and correlations between their derived parameters in parotid glands with radiotherapy dose levels. We assessed the method's ability to recover artificial pseudokernels which had been applied to denoised images. $AUC$ parameters were compared with the apparent diffusion coefficient ($ADC$), biexponential, and triexponential model parameters, in terms of their correlations with dose, and their relative contributions to the total variance of the dataset, obtained through singular value decomposition. Image denoising resulted in improved blind image quality metrics, and higher correlations between IVIM parameters and dose. $AUC$ parameters were more correlated with dose than traditional IVIM parameters, and captured the highest proportion of the dataset's variance. V This method of describing the signal decay curve with model-independent parameters like the $AUC$, and preprocessing images with denoising techniques, shows potential for improving reproducibility and utility of IVIM imaging.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. D. Le Bihan, “What can we see with ivim mri?,” NeuroImage, vol. 187, pp. 56–67, 2019. Physiological and Quantitative MRI.
  2. E. O. Stejskal and J. E. Tanner, “Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient,” The Journal of Chemical Physics, vol. 42, pp. 288–292, Jan. 1965.
  3. D. L. Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, “MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.,” Radiology, vol. 161, pp. 401–407, Nov. 1986.
  4. F. Bloch, “Nuclear induction,” Phys. Rev., vol. 70, pp. 460–474, Oct 1946.
  5. D. Le Bihan, E. Breton, D. Lallemand, M.-L. Aubin, J. Vignaud, and M. Laval-Jeantet, “Separation of diffusion and perfusion in intravoxel incoherent motion mr imaging.,” Radiology, vol. 168, no. 2, pp. 497–505, 1988.
  6. N. Zhou, C. Chu, X. Dou, M. Li, S. Liu, L. Zhu, B. Liu, T. Guo, W. Chen, J. He, J. Yan, Z. Zhou, X. Yang, and T. Liu, “Early evaluation of irradiated parotid glands with intravoxel incoherent motion MR imaging: correlation with dynamic contrast-enhanced MR imaging,” BMC Cancer, vol. 16, Nov. 2016.
  7. D. M. Koh, E. Scurr, D. J. Collins, A. Pirgon, B. Kanber, N. Karanjia, G. Brown, M. O. Leach, and J. E. Husband, “Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging,” European Radiology, vol. 16, pp. 1898–1905, May 2006.
  8. M. A. Troelstra, A.-M. V. Dijk, J. J. Witjes, A. L. Mak, D. Zwirs, J. H. Runge, J. Verheij, U. H. Beuers, M. Nieuwdorp, A. G. Holleboom, A. J. Nederveen, and O. J. Gurney-Champion, “Self-supervised neural network improves tri-exponential intravoxel incoherent motion model fitting compared to least-squares fitting in non-alcoholic fatty liver disease,” Frontiers in Physiology, vol. 13, Sept. 2022.
  9. Y.-H. Nai, X. Wang, J. Gan, C. P. L. Lian, R. F. Kirwan, F. S. L. Tan, and D. J. Hausenloy, “Effects of fitting methods, high b-values and image quality on diffusion and perfusion quantification and reproducibility in the calf,” Computers in Biology and Medicine, vol. 157, p. 106746, May 2023.
  10. E. Scalco, G. Rizzo, and A. Mastropietro, “The quantification of IntraVoxel incoherent motion – MRI maps cannot preserve texture information: An evaluation based on simulated and in-vivo images,” Computers in Biology and Medicine, vol. 154, p. 106495, Mar. 2023.
  11. O. J. Gurney-Champion, R. Klaassen, M. Froeling, S. Barbieri, J. Stoker, M. R. W. Engelbrecht, J. W. Wilmink, M. G. Besselink, A. Bel, H. W. M. van Laarhoven, and A. J. Nederveen, “Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients,” PLOS ONE, vol. 13, p. e0194590, Apr. 2018.
  12. N. Liu, X. Yang, L. Lei, K. Pan, Q. Liu, and X. Huang, “Intravoxel incoherent motion model in differentiating the pathological grades of esophageal carcinoma: Comparison of mono-exponential and bi-exponential fit model,” Frontiers in Oncology, vol. 11, Apr. 2021.
  13. C. Vieni, B. Ades-Aron, B. Conti, E. E. Sigmund, P. Riviello, T. M. Shepherd, Y. W. Lui, D. S. Novikov, and E. Fieremans, “Effect of intravoxel incoherent motion on diffusion parameters in normal brain,” NeuroImage, vol. 204, p. 116228, Jan. 2020.
  14. S. Yamada, S. Hiratsuka, T. Otani, S. Ii, S. Wada, M. Oshima, K. Nozaki, and Y. Watanabe, “Usefulness of intravoxel incoherent motion MRI for visualizing slow cerebrospinal fluid motion,” Fluids and Barriers of the CNS, vol. 20, Mar. 2023.
  15. Z.-X. Kuai, W.-Y. Liu, and Y.-M. Zhu, “Effect of multiple perfusion components on pseudo-diffusion coefficient in intravoxel incoherent motion imaging,” Physics in Medicine & Biology, vol. 62, pp. 8197–8209, Oct. 2017.
  16. J.-P. Cercueil, J.-M. Petit, S. Nougaret, P. Soyer, A. Fohlen, M.-A. Pierredon-Foulongne, V. Schembri, E. Delhom, S. Schmidt, A. Denys, S. Aho, and B. Guiu, “Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison of mono-, bi- and tri-exponential modelling at 3.0-t,” European Radiology, vol. 25, pp. 1541–1550, Dec. 2014.
  17. M. C. Wurnig, M. Germann, and A. Boss, “Is there evidence for more than two diffusion components in abdominal organs? – a magnetic resonance imaging study in healthy volunteers,” NMR in Biomedicine, vol. 31, Nov. 2017.
  18. O. Chevallier, N. Zhou, J.-P. Cercueil, J. He, R. Loffroy, and Y. X. J. Wáng, “Comparison of tri-exponential decay versus bi-exponential decay and full fitting versus segmented fitting for modeling liver intravoxel incoherent motion diffusion MRI,” NMR in Biomedicine, vol. 32, July 2019.
  19. A. J. Riexinger, J. Martin, S. Rauh, A. Wetscherek, M. Pistel, T. A. Kuder, A. M. Nagel, M. Uder, B. Hensel, L. Müller, and F. B. Laun, “On the field strength dependence of bi- and triexponential intravoxel incoherent motion (IVIM) parameters in the liver,” Journal of Magnetic Resonance Imaging, vol. 50, pp. 1883–1892, Apr. 2019.
  20. A. Riexinger, J. Martin, A. Wetscherek, T. A. Kuder, M. Uder, B. Hensel, and F. B. Laun, “An optimized b-value distribution for triexponential intravoxel incoherent motion (IVIM) in the liver,” Magnetic Resonance in Medicine, vol. 85, pp. 2095–2108, Nov. 2020.
  21. D. L. Bihan, R. Turner, C. T. W. Moonen, and J. Pekar, “Imaging of diffusion and microcirculation with gradient sensitization: Design, strategy, and significance,” Journal of Magnetic Resonance Imaging, vol. 1, pp. 7–28, Jan. 1991.
  22. J. Pekar, C. T. W. Moonen, and P. C. M. van Zijl, “On the precision of diffusion/perfusion imaging by gradient sensitization,” Magnetic Resonance in Medicine, vol. 23, pp. 122–129, Jan. 1992.
  23. D.-M. Koh, M. Blackledge, D. J. Collins, A. R. Padhani, T. Wallace, B. Wilton, N. J. Taylor, J. J. Stirling, R. Sinha, P. Walicke, M. O. Leach, I. Judson, and P. Nathan, “Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin a4 phosphate and bevacizumab in a two-centre phase i clinical trial,” European Radiology, vol. 19, pp. 2728–2738, June 2009.
  24. M. Iima, K. Yano, M. Kataoka, M. Umehana, K. Murata, S. Kanao, K. Togashi, and D. L. Bihan, “Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging,” Investigative Radiology, vol. 50, pp. 205–211, Apr. 2015.
  25. Y.-P. Liao, S. ichi Urayama, T. Isa, and H. Fukuyama, “Optimal model mapping for intravoxel incoherent motion MRI,” Frontiers in Human Neuroscience, vol. 15, Feb. 2021.
  26. J. A. U. Perucho, H. C. C. Chang, V. Vardhanabhuti, M. Wang, A. S. Becker, M. C. Wurnig, and E. Y. P. Lee, “B-value optimization in the estimation of intravoxel incoherent motion parameters in patients with cervical cancer,” Korean Journal of Radiology, vol. 21, no. 2, p. 218, 2020.
  27. A. Lemke, B. Stieltjes, L. R. Schad, and F. B. Laun, “Toward an optimal distribution of b values for intravoxel incoherent motion imaging,” Magnetic Resonance Imaging, vol. 29, pp. 766–776, July 2011.
  28. J. Raju, U. A. C., and A. John, “A novel approach for b-value optimization in intravoxel incoherent motion imaging using metaheuristic algorithm,” Expert Systems with Applications, vol. 168, p. 114270, Apr. 2021.
  29. C. Paganelli, M. A. Zampini, L. Morelli, G. Buizza, G. Fontana, L. Anemoni, S. Imparato, G. Riva, A. Iannalfi, E. Orlandi, and G. Baroni, “Optimizing b-values schemes for diffusion MRI of the brain with segmented intravoxel incoherent motion (IVIM) model,” Journal of Applied Clinical Medical Physics, vol. 24, Apr. 2023.
  30. G. Zhu, J. J. Heit, B. W. Martin, D. G. Marcellus, C. Federau, and M. Wintermark, “Optimized combination of b‑values for IVIM perfusion imaging in acute ischemic stroke patients,” Clinical Neuroradiology, vol. 30, pp. 535–544, Aug. 2019.
  31. H.-J. Lee, S. Y. Rha, Y. E. Chung, H. S. Shim, Y. J. Kim, J. Hur, Y. J. Hong, and B. W. Choi, “Tumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: Correlation with histological microvessel density,” Magnetic Resonance in Medicine, vol. 71, pp. 1554–1558, June 2013.
  32. S. Bisdas, C. Braun, M. Skardelly, J. Schittenhelm, T. H. Teo, C. H. Thng, U. Klose, and T. S. Koh, “Correlative assessment of tumor microcirculation using contrast-enhanced perfusion MRI and intravoxel incoherent motion diffusion-weighted MRI: is there a link between them?,” NMR in Biomedicine, vol. 27, pp. 1184–1191, Aug. 2014.
  33. R. P. Kennan, J.-H. Gao, J. Zhong, and J. C. Gore, “A general model of microcirculatory blood flow effects in gradient sensitized MRI,” Medical Physics, vol. 21, pp. 539–545, Apr. 1994.
  34. A. Wetscherek, B. Stieltjes, and F. B. Laun, “Flow-compensated intravoxel incoherent motion diffusion imaging,” Magnetic Resonance in Medicine, vol. 74, pp. 410–419, Aug. 2014.
  35. R. M. Henkelman, J. J. Neil, and Q.-S. Xiang, “A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain,” Magnetic Resonance in Medicine, vol. 32, pp. 464–469, Oct. 1994.
  36. T. Q. Duong and S.-G. Kim, “In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain,” Magnetic Resonance in Medicine, vol. 43, pp. 393–402, Mar. 2000.
  37. G. Fournet, J.-R. Li, A. M. Cerjanic, B. P. Sutton, L. Ciobanu, and D. L. Bihan, “A two-pool model to describe the IVIM cerebral perfusion,” Journal of Cerebral Blood Flow & Metabolism, vol. 37, pp. 2987–3000, Jan. 2016.
  38. A. D. Cohen, M. C. Schieke, M. D. Hohenwalter, and K. M. Schmainda, “The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver,” Magnetic Resonance in Medicine, vol. 73, pp. 306–311, Jan. 2014.
  39. C. Ye, D. Xu, Y. Qin, L. Wang, R. Wang, W. Li, Z. Kuai, and Y. Zhu, “Estimation of intravoxel incoherent motion parameters using low b-values,” PLOS ONE, vol. 14, p. e0211911, Feb. 2019.
  40. P. Mukherjee, J. Berman, S. Chung, C. Hess, and R. Henry, “Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings,” American Journal of Neuroradiology, vol. 29, pp. 632–641, Mar. 2008.
  41. K. Erlandsson, P. Buvat, I andPretorius, B. Thomas, and B. Hutton, “A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology,” Phys Med Biol., vol. 57, Nov 2012.
  42. J. A. Lee, X. Geets, V. Grégoire, and A. Bol, “Edge-preserving filtering of images with low photon counts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 1014–1027, 2008.
  43. N. M. Alpert, A. Reilhac, T. C. Chio, and I. Selesnick, “Optimization of dynamic measurement of receptor kinetics by wavelet denoising,” NeuroImage, vol. 30, no. 2, pp. 444–451, 2006.
  44. F. Šroubek, M. Šorel, J. Boldyš, and J. Šroubek, “Pet image reconstruction using prior information from ct or mri,” in 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2493–2496, 2009.
  45. S. Guérit, L. Jacques, B. Macq, and J. A. Lee, “Post-reconstruction deconvolution of pet images by total generalized variation regularization,” 2015.
  46. D. Ren, K. Zhang, Q. Wang, Q. Hu, and W. Zuo, “Neural blind deconvolution using deep priors,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3338–3347, 2020. http://doi.org/10.1109/CVPR42600.2020.00340.
  47. J. Kotera, F. Sroubek, and V. Smidl, “Improving neural blind deconvolution,” in 2021 IEEE International Conference on Image Processing (ICIP), pp. 1954–1958, 2021. http://doi.org/10.1109/ICIP42928.2021.9506502.
  48. S. Caleb, U. Carlos, A. Rahmim, F. Benard, J. Wu, and H. Clark, “Neural blind deconvolution for simultaneous partial volume effect correction and super-sampling of psma pet images,” arXiv: arXiv:2309.00590v1, 2023.
  49. C. Sample, A. Rahmim, F. Bénard, J. Wu, and H. Clark, “Psma pet as a predictive tool for sub-regional importance estimates in the parotid gland,” 2023.
  50. H. Gudbjartsson and S. Patz, “The rician distribution of noisy mri data,” Magnetic Resonance in Medicine, vol. 34, pp. 910–914, Dec. 1995.
  51. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.
  52. A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Transactions on Image Processing, vol. 21, no. 12, pp. 4695–4708, 2012. https://doi.org/10.1109/TIP.2012.2214050.
  53. J. Wang, K. C. K. Chan, and C. C. Loy, “Exploring clip for assessing the look and feel of images,” arXiv, 2022.
  54. M. P. T. Kaandorp, S. Barbieri, R. Klaassen, H. W. M. van Laarhoven, H. Crezee, P. T. While, A. J. Nederveen, and O. J. Gurney-Champion, “Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients,” Magnetic Resonance in Medicine, vol. 86, pp. 2250–2265, June 2021.
  55. D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponential linear units (elus),” 2015.
  56. S. Barbieri, O. J. Gurney-Champion, R. Klaassen, and H. C. Thoeny, “Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI,” Magnetic Resonance in Medicine, vol. 83, pp. 312–321, Aug. 2019.
  57. M. Bruvo and F. Mahmood, “Apparent diffusion coefficient measurement of the parotid gland parenchyma,” Quantitative Imaging in Medicine and Surgery, vol. 11, pp. 3812–3829, Aug. 2021.
  58. A. Nada, A. Youssef, A. Basmy, A. Amin, and A. Shokry, “Diffusion-weighted imaging of the parotid gland: Can the apparent diffusion coefficient discriminate between normal and abnormal parotid gland tissues?,” Erciyes Tıp Dergisi/Erciyes Medical Journal, vol. 39, pp. 125–130, Sept. 2017.
  59. M. Kimura, H. Yabuuchi, H. Narita, Y. Kurihara, K. Hisada, N. Sakai, K. Nagatomo, R. Mikayama, M. Masaki, and H. Kimura, “Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) of the major salivary glands: an assessment of the optimal number and combination of b-values,” Polish Journal of Radiology, vol. 87, no. 1, pp. 246–256, 2022.
  60. A. S. Becker, A. Manoliu, M. C. Wurnig, and A. Boss, “Intravoxel incoherent motion imaging measurement of perfusion changes in the parotid gland provoked by gustatory stimulation: A pilot study,” Journal of Magnetic Resonance Imaging, vol. 45, pp. 570–578, July 2016.
  61. A. Cieszanowski, K. Pasicz, J. Podgórska, E. Fabiszewska, W. Skrzyński, J. Jasieniak, A. Anysz-Grodzicka, I. Grabska, J. Pałucki, M. Naduk-Ostrowska, B. Jagielska, and P. Kukołowicz, “Reproducibility of intravoxel incoherent motion of liver on a 3.0t scanner: free-breathing and respiratory-triggered sequences acquired with different numbers of excitations,” Polish Journal of Radiology, vol. 83, pp. 437–445, 2018.
  62. H. Dyvorne, G. Jajamovich, S. Kakite, B. Kuehn, and B. Taouli, “Intravoxel incoherent motion diffusion imaging of the liver: Optimal b-value subsampling and impact on parameter precision and reproducibility,” European Journal of Radiology, vol. 83, pp. 2109–2113, Dec. 2014.
  63. Sample, C. (2023). neural_blind_deconv_PSMA. GitHub. https://github.com/samplecm/neural_blind_deconv_PSMA.

Summary

We haven't generated a summary for this paper yet.