Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Real-Weighted Beamforming With Application to Linear and Spherical Arrays (2401.02285v1)

Published 4 Jan 2024 in eess.AS and cs.SD

Abstract: One of the uses of sensor arrays is for spatial filtering or beamforming. Current digital signal processing methods facilitate complex-weighted beamforming, providing flexibility in array design. Previous studies proposed the use of real-valued beamforming weights, which although reduce flexibility in design, may provide a range of benefits, e.g., simplified beamformer implementation or efficient beamforming algorithms. This paper presents a new method for the design of arrays with real-valued weights, that achieve maximum directivity, providing closed-form solution to array weights. The method is studied for linear and spherical arrays, where it is shown that rigid spherical arrays are particularly suitable for real-weight designs as they do not suffer from grating lobes, a dominant feature in linear arrays with real weights. A simulation study is presented for linear and spherical arrays, along with an experimental investigation, validating the theoretical developments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. H. Krim and M. Viberg, “Two decades of array signal processing research,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, July 1996.
  2. B. Rafaely, “Analysis and design of spherical microphone array,” IEEE Trans. on Speech Audio Process., vol. 13, no. 1, Jan. 2005.
  3. J. Meyer and G. W. Elko, “A spherical microphone array for spatial sound recordings,” J. Acoust. Soc. Am, vol. 111, no. 5.2, pp. 2346–2346, 2002.
  4. B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Magazine, Apr. 1988.
  5. L. Griffiths and C. Jim, “An alternative approach to linearly constrained adaptive beamforming,” IEEE Trans. Antennas Propag., vol. 30, no. 1, pp. 27–34, Jan. 1982.
  6. D. I. Havelock, “Sensor array beamforming using random channel sampling: The aggregate beamformer,” J. Acoust. Soc. Am, vol. 114, pp. 1997–2006, Oct. 2003.
  7. D. Havelock, “Residual noise in the aggregate beamformer,” in 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2003, pp. 45–48.
  8. M. Agmon, B. Rafaely, and J. Tabrikian, “Maximum directivity beamformer for spherical-aperture microphones,” in 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2009, pp. 153–156.
  9. T. Vu, “Simultaneous nulling in sum and difference patterns by amplitude control,” IEEE Trans. Antennas Propag., vol. 34, no. 2, pp. 214–218, Feb. 1986.
  10. K. Lo, “Adaptivity of a real-symmetric array by DOA estimation and null steering,” IEE Proceedings, Radar, Sonar and Navigation, vol. 144, no. 5, pp. 245–251, Oct. 1997.
  11. T. Gao, Y. Guo, and J. Li, “A fast beamforming algorithm for adaptive sum and difference patterns in conformal array antennas,” in Antennas and Propagation Society International Symposium, 1992. AP-S, Digest., vol. 1, July 1992, pp. 450–453.
  12. G. Yanchang and L. Jianxin, “Real amplitude-only nulling algorithm (RAMONA) for adaptive digital beamforming,” in Antennas and Propagation Society International Symposium, 1990. AP-S. Merging Technologies for the 90’s. Digest., vol. 1, May 1990, pp. 206–209.
  13. Y. Guo and J. Li, “Real amplitude-only nulling algorithm (RAMONA) for adaptive sum and difference patterns,” in Antennas and Propagation Society International Symposium, 1991. AP-S. Digest, vol. 1, June 1991, pp. 94–97.
  14. G. Yanchang and L. Jianxin, “Speed up and optimization of RAMONA for adaptive digital beamforming,” in Eighth International Conference on Antennas and Propagation, 1993., vol. 1, 1993, pp. 508–511.
  15. Y.-H. Choi, “Simple adaptive beamforming with only real weights based on covariance differencing,” Electronics Letters, vol. 43, no. 10, pp. 552–553, Oct. 2007.
  16. W. Choi, T. Sarkar, H. Wang, and E. Mokole, “Adaptive processing using real weights based on a direct data domain least squares approach,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 182–191, Jan. 2006.
  17. M. Ghavami, “Wideband beamforming using rectangular arrays without phase shifting,” European Transactions on Telecommunications, vol. 14, pp. 449–456, 2003.
  18. W. Buehring, “Adaptive antenna with rapid convergence,” in IEEE Trans. Antennas Propag., 1978, pp. 51–54.
  19. M. Paajanen, J. Lekkala, and K. Kirjavainen, “Electromechanical film (emfi) – a new multipurpose electret material,” Sensors and Actuators A: Physical, vol. 84, no. 1-2, pp. 95–102, 2000.
  20. J. Lekkala and M. Paajanen, “Emfi - new electret material for sensors and actuators,” in 10t⁢hsuperscript10𝑡ℎ10^{th}10 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT International Symposium on Electrets, 1999.
  21. J. L. Ealo, F. Seco, and A. R. Jimenes, “Broadband emfi-based transducers for ultrasonic air applications,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 55, no. 4, Apr. 2008.
  22. J. L. Ealo, F. Seco, C. Prieto, A. R. Jimenes, J. Roa, A. Koutsou, and J. Guevara, “Customizable field airborne ultrasonic transducers based on electromechanical film,” in IEEE International Ultrasonics Symposium Proceedings, 2008.
  23. S. Yan, H. Sun, X. Ma, U. Svensson, and C. Hou, “Time-domain implementation of broadband beamformer in spherical harmonics domain,” IEEE Trans. Audio, Speech Lang. Process., vol. 19, no. 5, pp. 1221–1230, July 2011.
  24. B. Rafaely, “Plane-wave decomposition of the sound field on a sphere by spherical convolution,” J. Acoust. Soc. Am, vol. 116, no. 4, Oct. 2004.
  25. B. Rafaely, Y. Peled, M. Agmon, D. Khaykin, and E. Fisher, “Spherical microphone array beamforming,” in Speech Processing in Modern Communications: challenges and perspectives, I. Cohen, J. Benesty, and S. Gannot, Eds.   Berlin: Springer-Verlag, 2010, ch. 11, pp. 281–305.
  26. B. Rafaely, “Phase-mode versus delay-and-sum spherical microphone array processing,” IEEE Signal Processing Letters, vol. 12, no. 10, pp. 713–716, Oct. 2005.
  27. J. Meyer and G. W. Elko, “A highly scalable spherical microphone array based on an orthonormal decomposition of the sound field,” Proc. ICASSP, vol. II, pp. 1949–1952, 2002.
  28. H. Sun, S. Yan, and U. Svensson, “Robust minimum sidelobe beamforming for spherical microphone arrays,” IEEE Trans. Audio, Speech Lang. Process., vol. 19, no. 4, pp. 1045–1051, May 2011.
  29. H. Sun, S. Yan, and U. Peter Svensson, “Robust spherical microphone array beamforming with multi-beam-multi-null steering, and sidelobe control,” in 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2009, pp. 113–116.
  30. H. Sun, S. Yan, and U. Svensson, “Optimal higher order ambisonics encoding with predefined constraints,” IEEE Trans. Audio, Speech Lang. Process., vol. 20, no. 3, pp. 742–754, Mar. 2012.
  31. S. Yan, H. Sun, U. Svensson, X. Ma, and J. Hovem, “Optimal modal beamforming for spherical microphone arrays,” IEEE Trans. Audio, Speech Lang. Process., vol. 19, no. 2, pp. 361–371, Feb. 2011.
  32. B. Rafaely, I. Balmages, and L. Eger, “High-resolution plane-wave decomposition in an auditorium using a dual-radius scanning spherical microphone array,” J. Acoust. Soc. Am, vol. 122, no. 5, pp. 2661–2668, 2007.
  33. B. Rafaely and A. Avni, “Interaural cross correlation in a sound field represented by spherical harmonics,” J. Acoust. Soc. Am, vol. 127, no. 2, pp. 823–828, 2010.
Citations (12)

Summary

We haven't generated a summary for this paper yet.