Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Termination of Rewriting on Reversible Boolean Circuits as a Free 3-Category Problem (2401.02091v1)

Published 4 Jan 2024 in cs.LO and math.CT

Abstract: Reversible Boolean Circuits are an interesting computational model under many aspects and in different fields, ranging from Reversible Computing to Quantum Computing. Our contribution is to describe a specific class of Reversible Boolean Circuits - which is as expressive as classical circuits - as a bi-dimensional diagrammatic programming language. We uniformly represent the Reversible Boolean Circuits we focus on as a free 3-category Toff. This formalism allows us to incorporate the representation of circuits and of rewriting rules on them, and to prove termination of rewriting. Termination follows from defining a non-identities-preserving functor from our free 3-category Toff into a suitable 3-category Move that traces the "moves" applied to wires inside circuits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5 (1961) 183–191.
  2. Encryption and reversible computations, in: J. Kari, I. Ulidowski (Eds.), Reversible Computation, Springer International Publishing, Cham, 2018, pp. 331–338.
  3. Elementary gates for quantum computation, Phys. Rev. A 52 (1995) 3457–3467. URL: https://link.aps.org/doi/10.1103/PhysRevA.52.3457. doi:10.1103/PhysRevA.52.3457.
  4. M. Saeedi, I. L. Markov, Synthesis and optimization of reversible circuits—a survey, ACM Comput. Surv. 45 (2013). URL: https://doi.org/10.1145/2431211.2431220. doi:10.1145/2431211.2431220.
  5. T. Toffoli, Reversible computing, in: J. W. de Bakker, J. van Leeuwen (Eds.), Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherland, July 14-18, 1980, Proceedings, volume 85 of Lecture Notes in Computer Science, Springer, 1980, pp. 632–644.
  6. Y. Lafont, Towards an algebraic theory of boolean circuits, Journal of Pure and Applied Algebra 184 (2003).
  7. Reversible Pebbling Game for Quantum Memory Management, in: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019, pp. 288–291.
  8. A. Burroni, Higher-dimensional Word Problems with Applications to Equational Logic, Theoret. Comput. Sci. 115 (1993) 43–62. doi:https://doi.org/10.1016/0304-3975(93)90054-W.
  9. Y. Guiraud, G. Bonfante, Polygraphic programs and polynomial-time functions, Log. Methods Comput. Sci. 5 (2009).
  10. Y. Guiraud, P. Malbos, Higher-dimensional Categories with Finite Derivation Type, Theory Appl. Categ. 22 (2009) 420–478.
  11. Y. Guiraud, Termination orders for three-dimensional rewriting, Journal of Pure and Applied Algebra 207 (2006) 341–371. doi:https://doi.org/10.1016/j.jpaa.2005.10.011.
  12. J. C. Baez, An introduction to n-categories, in: E. Moggi, G. Rosolini (Eds.), Category Theory and Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, pp. 1–33.
  13. R. Street, The algebra of oriented simplexes, Journal of Pure and Applied Algebra 49 (1987) 304–305.
  14. F. Métayer, Cofibrant objects among higher-dimensional categories, Homology, Homotopy and Applications 10 (2008) 185–188. doi:10.4310/HHA.2008.v10.n1.a7.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com