Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Approximate Opacity of Stochastic Control Systems (2401.01972v2)

Published 3 Jan 2024 in eess.SY and cs.SY

Abstract: This paper investigates an important class of information-flow security property called opacity for stochastic control systems. Opacity captures whether a system's secret behavior (a subset of the system's behavior that is considered to be critical) can be kept from outside observers. Existing works on opacity for control systems only provide a binary characterization of the system's security level by determining whether the system is opaque or not. In this work, we introduce a quantifiable measure of opacity that considers the likelihood of satisfying opacity for stochastic control systems modeled as general Markov decision processes (gMDPs). We also propose verification methods tailored to the new notions of opacity for finite gMDPs by using value iteration techniques. Then, a new notion called approximate opacity-preserving stochastic simulation relation is proposed, which captures the distance between two systems' behaviors in terms of preserving opacity. Based on this new system relation, we show that one can verify opacity for stochastic control systems using their abstractions (modeled as finite gMDPs). We also discuss how to construct such abstractions for a class of gMDPs under certain stability conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. H. Sandberg, S. Amin, and K. H. Johansson, “Cyberphysical security in networked control systems: An introduction to the issue,” IEEE Control Systems Magazine, vol. 35, no. 1, pp. 20–23, 2015.
  2. S. M. Dibaji, M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H. Johansson, and A. Chakrabortty, “A systems and control perspective of cps security,” Annual reviews in control, vol. 47, pp. 394–411, 2019.
  3. S. Liu, A. Trivedi, X. Yin, and M. Zamani, “Secure-by-construction synthesis of cyber-physical systems,” Annual Reviews in Control, vol. 53, pp. 30–50, 2022.
  4. A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in discrete event systems,” in 2007 46th IEEE Conference on Decision and Control.   IEEE, 2007, pp. 5056–5061.
  5. M. Noori-Hosseini, B. Lennartson, and C. Hadjicostis, “Compositional visible bisimulation abstraction applied to opacity verification,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 434–441, 2018.
  6. S. Lafortune, F. Lin, and C. N. Hadjicostis, “On the history of diagnosability and opacity in discrete event systems,” Annual Reviews in Control, vol. 45, pp. 257–266, 2018.
  7. L. Mazaré, “Using unification for opacity properties,” in Workshop on Issues in the Theory of Security, vol. 4, 2004, pp. 165–176.
  8. F. Lin, “Opacity of discrete event systems and its applications,” Automatica, vol. 47, no. 3, pp. 496–503, 2011.
  9. A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity in security applications of discrete event systems,” Information Sciences, vol. 246, pp. 115–132, 2013.
  10. A. Saboori and C. Hadjicostis, “Verification of infinite-step opacity and complexity considerations,” IEEE Trans. Automatic Control, vol. 57, no. 5, pp. 1265–1269, 2012.
  11. S. Yang and X. Yin, “Secure your intention: On notions of pre-opacity in discrete-event systems,” IEEE Transactions on Automatic Control, vol. 68, no. 8, pp. 4754–4766, 2023.
  12. A. Saboori and C. N. Hadjicostis, “Verification of k𝑘kitalic_k-step opacity and analysis of its complexity,” IEEE Transactions on Automation Science and Engineering, vol. 8, no. 3, pp. 549–559, 2011.
  13. X. Yin and S. Lafortune, “A new approach for the verification of infinite-step and k-step opacity using two-way observers,” Automatica, vol. 80, pp. 162–171, 2017.
  14. J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. Ryan, “Opacity generalised to transition systems,” International Journal of Information Security, vol. 7, no. 6, pp. 421–435, 2008.
  15. K. Zhang, X. Yin, and M. Zamani, “Opacity of nondeterministic transition systems: A (bi) simulation relation approach,” IEEE Transactions on Automatic Control, 2019.
  16. Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Decidability of opacity verification problems in labeled petri net systems,” Automatica, vol. 80, pp. 48–53, 2017.
  17. Y. Tong, H. Lan, and C. Seatzu, “Verification of k-step and infinite-step opacity of bounded labeled petri nets,” Automatica, vol. 140, p. 110221, 2022.
  18. R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event systems opacity: Models, validation, and quantification,” Annual Reviews in Control, vol. 41, pp. 135–146, 2016.
  19. X. Yin, M. Zamani, and S. Liu, “On approximate opacity of cyber-physical systems,” IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1630–1645, 2020.
  20. B. Ramasubramanian, W. Cleaveland, and S. Marcus, “Notions of centralized and decentralized opacity in linear systems,” IEEE Transactions on Automatic Control, vol. 265, no. 4, pp. 1442–1455, 2020.
  21. L. An and G.-H. Yang, “Opacity enforcement for confidential robust control in linear cyber-physical systems,” IEEE Transactions on Automatic Control, vol. 65, no. 3, pp. 1234–1241, 2020.
  22. S. Liu and M. Zamani, “Verification of approximate opacity via barrier certificates,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1369–1374, 2020.
  23. J. Hou, S. Liu, X. Yin, and M. Zamani, “Abstraction-based verification of approximate preopacity for control systems,” IEEE Control Systems Letters, vol. 7, pp. 1087–1092, 2022.
  24. M. Mizoguchi and T. Ushio, “Abstraction-based control under quantized observation with approximate opacity using symbolic control barrier functions,” IEEE Control Systems Letters, vol. 6, pp. 2222–2227, 2021.
  25. S. Liu and M. Zamani, “Compositional synthesis of opacity-preserving finite abstractions for interconnected systems,” Automatica, vol. 131, p. 109745, 2021.
  26. B. Zhong, S. Liu, M. Caccamo, and M. Zamani, “Secure-by-construction synthesis for control systems,” arXiv preprint arXiv:2307.02564, 2023.
  27. A. Saboori and C. N. Hadjicostis, “Current-state opacity formulations in probabilistic finite automata,” IEEE Transactions on automatic control, vol. 59, no. 1, pp. 120–133, 2014.
  28. B. Bérard, K. Chatterjee, and N. Sznajder, “Probabilistic opacity for Markov decision processes,” Information Processing Letters, vol. 115, no. 1, pp. 52–59, 2015.
  29. J. Chen, M. Ibrahim, and R. Kumar, “Quantification of secrecy in partially observed stochastic discrete event systems,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 1, pp. 185–195, 2017.
  30. M. Ahmadi, B. Wu, H. Lin, and U. Topcu, “Privacy verification in POMDPs via barrier certificates,” in IEEE Conference on Decision and Control.   IEEE, 2018, pp. 5610–5615.
  31. B. Wu and H. Lin, “Privacy verification and enforcement via belief abstraction,” IEEE control systems letters, vol. 2, no. 4, pp. 815–820, 2018.
  32. X. Yin, Z. Li, W. Wang, and S. Li, “Infinite-step opacity and k-step opacity of stochastic discrete-event systems,” Automatica, vol. 99, pp. 266–274, 2019.
  33. S. Liu, X. Yin, and M. Zamani, “On a notion of approximate opacity for discrete-time stochastic control systems,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 5413–5418.
  34. S. Haesaert, S. E. Zadeh Soudjani, and A. Abate, “Verification of general markov decision processes by approximate similarity relations and policy refinement,” SIAM Journal on Control and Optimization, vol. 55, no. 4, pp. 2333–2367, 2017.
  35. A. Lavaei, S. Soudjani, and M. Zamani, “Compositional abstraction-based synthesis of general mdps via approximate probabilistic relations,” Nonlinear Analysis: Hybrid Systems, vol. 39, p. 100991, 2021.
  36. I. Chadès, G. Chapron, M.-J. Cros, F. Garcia, and R. Sabbadin, “Mdptoolbox: a multi-platform toolbox to solve stochastic dynamic programming problems,” Ecography, vol. 37, no. 9, pp. 916–920, 2014.
  37. A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated verification and synthesis of stochastic hybrid systems: A survey,” Automatica, vol. 146, p. 110617, 2022.
  38. D. N. Tran, B. S. Rüffer, and C. M. Kellett, “Convergence properties for discrete-time nonlinear systems,” IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3415–3422, 2018.
  39. M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros, “Symbolic control of stochastic systems via approximately bisimilar finite abstractions,” IEEE Transactions on Automatic Control, vol. 59, no. 12, pp. 3135–3150, 2014.
  40. A. Lavaei, S. Soudjani, and M. Zamani, “From dissipativity theory to compositional construction of finite markov decision processes,” in Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control, 2018, pp. 21–30.
  41. C. Canudas-de Wit, L. L. Ojeda, and A. Y. Kibangou, “Graph constrained-ctm observer design for the grenoble south ring,” IFAC Proceedings Volumes, vol. 45, no. 24, pp. 197–202, 2012.
  42. S. Soudjani, C. Gevaerts, and A. Abate, “FAUST𝟤𝟤{}^{\textsf{2}}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT: Formal abstractions of uncountable-state stochastic processes,” in TACAS’15, ser. Lecture Notes in Computer Science.   Springer, 2015, vol. 9035, pp. 272–286.
  43. M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic symbolic model checker,” in International Conference on Modelling Techniques and Tools for Computer Performance Evaluation.   Springer, 2002, pp. 200–204.
Citations (1)

Summary

We haven't generated a summary for this paper yet.