Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Many-Objective-Optimized Semi-Automated Robotic Disassembly Sequences (2401.01817v1)

Published 3 Jan 2024 in cs.RO

Abstract: This study tasckles the problem of many-objective sequence optimization for semi-automated robotic disassembly operations. To this end, we employ a many-objective genetic algorithm (MaOGA) algorithm inspired by the Non-dominated Sorting Genetic Algorithm (NSGA)-III, along with robotic-disassembly-oriented constraints and objective functions derived from geometrical and robot simulations using 3-dimensional (3D) geometrical information stored in a 3D Computer-Aided Design (CAD) model of the target product. The MaOGA begins by generating a set of initial chromosomes based on a contact and connection graph (CCG), rather than random chromosomes, to avoid falling into a local minimum and yield repeatable convergence. The optimization imposes constraints on feasibility and stability as well as objective functions regarding difficulty, efficiency, prioritization, and allocability to generate a sequence that satisfies many preferred conditions under mandatory requirements for semi-automated robotic disassembly. The NSGA-III-inspired MaOGA also utilizes non-dominated sorting and niching with reference lines to further encourage steady and stable exploration and uniformly lower the overall evaluation values. Our sequence generation experiments for a complex product (36 parts) demonstrated that the proposed method can consistently produce feasible and stable sequences with a 100% success rate, bringing the multiple preferred conditions closer to the optimal solution required for semi-automated robotic disassembly operations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. H. Poschmann, H. Brüggemann, and D. Goldmann, “Disassembly 4.0: A review on using robotics in disassembly tasks as a way of automation,” Chemie Ingenieur Technik, vol. 92, no. 4, pp. 341–359, 2020.
  2. M. Daneshmand, F. Noroozi, C. Corneanu, F. Mafakheri, and P. Fiorini, “Industry 4.0 and prospects of circular economy: a survey of robotic assembly and disassembly,” The Int. J. Adv. Manuf. Tech., vol. 124, pp. 1–28, 2022.
  3. S. Lou, R. Tan, Y. Zhang, and C. Lv, “Human-robot interactive disassembly planning in industry 5.0*,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mech., 2023, pp. 891–895.
  4. G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel, “Learning robotic assembly from CAD,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 3524–3531.
  5. K. Tariki, T. Kiyokawa, T. Nagatani, J. Takamatsu, and T. Ogasawara, “Generating complex assembly sequences from 3D CAD models considering insertion relations,” Adv. Robot., vol. 35, no. 6, pp. 337–348, 2021.
  6. F. Chervinskii, S. Zobov, A. Rybnikov, D. Petrov, and K. Vendidandi, “Auto-Assembly: a framework for automated robotic assembly directly from CAD,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 11 294–11 300.
  7. Y. Koga, H. Kerrick, and S. Chitta, “On CAD informed adaptive robotic assembly,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 10 207–10 214.
  8. M. Goldwasser, J.-C. Latombe, and R. Motwani, “Complexity measures for assembly sequences,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 2, 1996, pp. 1851–1857.
  9. W. H. Chen, K. Wegener, and F. Dietrich, “A robot assistant for unscrewing in hybrid human-robot disassembly,” in Proc. IEEE Int. Conf. Robot. Biomim., 2014, pp. 536–541.
  10. S. Parsa and M. Saadat, “Human-robot collaboration disassembly planning for end-of-life product disassembly process,” Robot. Comput.-Integr. Manuf., vol. 71, p. 102170, 2021.
  11. H.-y. Liao, Y. Chen, B. Hu, and S. Behdad, “Optimization-based disassembly sequence planning under uncertainty for human–robot collaboration,” J. Mech. Des., vol. 145, no. 2, p. 022001, 2022.
  12. S. Hjorth, E. Lamon, D. Chrysostomou, and A. Ajoudani, “Design of an energy-aware cartesian impedance controller for collaborative disassembly,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 7483–7489.
  13. M.-L. Lee, W. Liu, S. Behdad, X. Liang, and M. Zheng, “Robot-assisted disassembly sequence planning with real-time human motion prediction,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 1, pp. 438–450, 2023.
  14. X. Guo, C. Fan, M. Zhou, S. Liu, J. Wang, S. Qin, and Y. Tang, “Human–robot collaborative disassembly line balancing problem with stochastic operation time and a solution via multi-objective shuffled frog leaping algorithm,” IEEE Trans. Autom. Sci. Eng., pp. 1–12, 2023.
  15. K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints,” IEEE Trans. Evol. Comput, vol. 18, no. 4, pp. 577–601, 2014.
  16. L. Homem de Mello and A. Sanderson, “Planning repair sequences using the AND/OR graph representation of assembly plans,” in Proc. IEEE Int. Conf. Robot. Autom., 1988, pp. 1861–1862.
  17. S. Lee and H. Moradi, “Disassembly sequencing and assembly sequence verification using force flow networks,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 4, 1999, pp. 2762–2767.
  18. S. Sundaram, I. Remmler, and N. Amato, “Disassembly sequencing using a motion planning approach,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 2, 2001, pp. 1475–1480.
  19. D. T. Le, J. Cortes, and T. Simeon, “A path planning approach to (dis)assembly sequencing,” in Proc. IEEE Int. Conf. Autom. Sci. Eng., 2009, pp. 286–291.
  20. X. Zhao, C. Li, Y. Tang, and J. Cui, “Reinforcement learning-based selective disassembly sequence planning for the end-of-life products with structure uncertainty,” IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 7807–7814, 2021.
  21. T. Kiyokawa, J. Takamatsu, and T. Ogasawara, “Assembly sequences based on multiple criteria against products with deformable parts,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 975–981.
  22. Y. Laili, X. Li, Y. Wang, L. Ren, and X. Wang, “Robotic disassembly sequence planning with backup actions,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 2095–2107, 2022.
  23. S. Dorn, N. Wolpert, and E. Schömer, “An assembly sequence planning framework for complex data using general voronoi diagram,” in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 9896–9902.
  24. K. Wang, L. Gao, X. Li, and P. Li, “Energy-efficient robotic parallel disassembly sequence planning for end-of-life products,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 2, pp. 1277–1285, 2022.
  25. Y. Tian, J. Xu, Y. Li, J. Luo, S. Sueda, H. Li, K. D. Willis, and W. Matusik, “Assemble them all: Physics-based planning for generalizable assembly by disassembly,” ACM Trans. Graph., vol. 41, no. 6, 2022.
  26. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.
  27. T. Ebinger, S. Kaden, S. Thomas, R. Andre, N. M. Amato, and U. Thomas, “A general and flexible search framework for disassembly planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 3548–3555.
  28. K.-M. Lee and M. Bailey-van Kuren, “Modeling and supervisory control of a disassembly automation workcell based on blocking topology,” IEEE Trans. Robot. Autom., vol. 16, no. 1, pp. 67–77, 2000.
  29. A. Cebulla, T. Asfour, and T. Kröger, “Speeding up assembly sequence planning through learning removability probabilities,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 12 388–12 394.
  30. L. Ma, J. Gong, H. Xu, H. Chen, H. Zhao, W. Huang, and G. Zhou, “Planning assembly sequence with graph transformer,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 12 395–12 401.
  31. Y. Ren, H. Jin, F. Zhao, T. Qu, L. Meng, C. Zhang, B. Zhang, G. Wang, and J. W. Sutherland, “A multiobjective disassembly planning for value recovery and energy conservation from end-of-life products,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 791–803, 2021.
  32. P. Dario, M. Rucci, C. Guadagnini, and C. Laschi, “An investigation on a robot system for disassembly automation,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 4, 1994, pp. 3515–3521.
  33. K. Hohm, H. Muller Hofstede, and H. Tolle, “Robot assisted disassembly of electronic devices,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 2, 2000, pp. 1273–1278.
  34. E. Zussman and M. C. Zhou, “Design and implementation of an adaptive process planner for disassembly processes,” IEEE Trans. Robot. Autom., vol. 16, no. 2, pp. 171–179, 2000.
  35. D.-H. Kim, S.-J. Lim, D.-H. Lee, J. Y. Lee, and C.-S. Han, “A RRT-based motion planning of dual-arm robot for (dis)assembly tasks,” in Proc. IEEE Int. Symp. Robot, 2013, pp. 1–6.
  36. I. Rodrıguez, K. Nottensteiner, D. Leidner, M. Kaßecker, F. Stulp, and A. Albu-Schäffer, “Iteratively refined feasibility checks in robotic assembly sequence planning,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1416–1423, 2019.
  37. T. Bachmann, K. Nottensteiner, and M. A. Roa, “Automated planning of workcell layouts considering task sequences,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 12 662–12 668.
  38. M. Atad, J. Feng, I. Rodríguez, M. Durner, and R. Triebel, “Efficient and feasible robotic assembly sequence planning via graph representation learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023.
  39. J. Liu, Z. Zhou, D. T. Pham, W. Xu, C. Ji, and Q. Liu, “Collaborative optimization of robotic disassembly sequence planning and robotic disassembly line balancing problem using improved discrete bees algorithm in remanufacturing,” Robot. Comput.-Integr. Manuf., vol. 61, p. 101829, 2020.
  40. J. Liu, Z. Xu, H. Xiong, Q. Lin, W. Xu, and Z. Zhou, “Digital twin-driven robotic disassembly sequence dynamic planning under uncertain missing condition,” IEEE Trans. Ind. Info., vol. 19, no. 12, pp. 11 846–11 855, 2023.
  41. K. Zakka, A. Zeng, J. Lee, and S. Song, “Form2Fit: Learning shape priors for generalizable assembly from disassembly,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 9404–9410.
  42. Y. Lee, E. S. Hu, and J. J. Lim, “IKEA furniture assembly environment for long-horizon complex manipulation tasks,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 6343–6349.
  43. O. Aslan, B. Bolat, B. Bal, T. Tumer, E. Sahin, and S. Kalkan, “AssembleRL: Learning to assemble furniture from their point clouds,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 2748–2753.
  44. M. Qu, Y. Wang, and D. T. Pham, “Robotic disassembly task training and skill transfer using reinforcement learning,” IEEE Trans. Ind. Info., vol. 19, no. 11, pp. 10 934–10 943, 2023.
  45. J. Borràs, R. Heudorfer, S. Rader, P. Kaiser, and T. Asfour, “The KIT swiss knife gripper for disassembly tasks: A multi-functional gripper for bimanual manipulation with a single arm,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 4590–4597.
  46. C. Klas, F. Hundhausen, J. Gao, C. R. G. Dreher, S. Reither, Y. Zhou, and T. Asfour, “The KIT gripper: A multi-functional gripper for disassembly tasks,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 715–721.
  47. M. Wurster, M. Michel, M. C. May, A. Kuhnle, N. Stricker, and G. Lanza, “Modelling and condition-based control of a flexible and hybrid disassembly system with manual and autonomous workstations using reinforcement learning,” J. Intell. Manuf., vol. 33, 2022.
  48. Y. Zhang, H. Zhang, Z. Wang, S. Zhang, H. Li, and M. Chen, “Development of an autonomous, explainable, robust robotic system for electric vehicle battery disassembly,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mech., 2023, pp. 409–414.
  49. G. Gorjup, G. Gao, A. Dwivedi, and M. Liarokapis, “Combining compliance control, CAD based localization, and a multi-modal gripper for rapid and robust programming of assembly tasks,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 9064–9071.
  50. W. Wan and K. Harada, “Regrasp planning using 10,000s of grasps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2017, pp. 1929–1936.
  51. R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung, “Make it stand: Balancing shapes for 3D fabrication,” ACM Trans. Graph., vol. 32, no. 4, 2013.
  52. K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “ZMP analysis for arm/leg coordination,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 1, 2003, pp. 75–81.
  53. T. Kiyokawa, T. Sakuma, J. Takamatsu, and T. Ogasawara, “Soft-jig-driven assembly operations,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 3466–3472.
  54. J. Blank, K. Deb, and P. C. Roy, “Investigating the normalization procedure of NSGA-III,” in Pro. Evolutionary Multi-Criterion Optimization, 2019, pp. 229–240.
  55. T. Kiyokawa, N. Shirakura, Z. Wang, N. Yamanobe, I. G. Ramirez-Alpizar, W. Wan, and K. Harada, “Difficulty and complexity definitions for assembly task allocation and assignment in human–robot collaborations: A review,” Robot. Comput. Integr. Manuf., vol. 84, p. 102598, 2023.
  56. T. Yoshikawa, Y. Yokokohji, and Y. Yu, “Assembly planning operation strategies based on the degree of constraint,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 1991, pp. 682–687.
  57. “Industrial robotics category assembly challenge rules and regulations 2018,” The Industrial Robotics Competition Committee, October 2018. [Online]. Available: https://worldrobotsummit.org/download/rulebook-en/rulebook-Assembly_Challenge.pdf
  58. Z. Hu, W. Wan, K. Koyama, and K. Harada, “A mechanical screwing tool for parallel grippers—design, optimization, and manipulation policies,” IEEE Trans. Robot., vol. 38, no. 2, pp. 1139–1159, 2022.
  59. W. Wan, K. Harada, and F. Kanehiro, “Planning grasps with suction cups and parallel grippers using superimposed segmentation of object meshes,” IEEE Trans. Robot., vol. 37, no. 1, pp. 166–184, 2021.
  60. J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 2, 2000, pp. 995–1001.
  61. R. Diankov, “Automated construction of robotic manipulation programs,” Ph.D. dissertation, Carnegie Mellon University, Robotics Institute, August 2010.
  62. T. Sakuma, T. Kiyokawa, J. Takamatsu, T. Wada, and T. Ogasawara, “Soft-Jig: A flexible sensing jig for simultaneously fixing and estimating orientation of assembly parts,” in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 10 945–10 950.
  63. T. Sakuma, T. Kiyokawa, T. Matsubara, J. Takamatsu, T. Wada, and T. Ogasawara, “Jamming gripper-inspired soft jig for perceptive parts fixing,” IEEE Access, vol. 11, pp. 62 187–62 199, 2023.
  64. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D classification and segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern. Recognit., 2017, pp. 652–660.
  65. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature learning on point sets in a metric space,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 5105–5114.
  66. G. Qian, Y. Li, H. Peng, J. Mai, H. Hammoud, M. Elhoseiny, and B. Ghanem, “PointNeXt: Revisiting PointNet++ with improved training and scaling strategies,” in Proc. Adv. Neural Inf. Process. Syst., 2022.
  67. J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “DeepSDF: Learning continuous signed distance functions for shape representation,” in Proc. IEEE/CVF Conf. Comput. Vis. Patern. Recognit., 2019, pp. 165–174.
  68. Z. Hao, H. Averbuch-Elor, N. Snavely, and S. Belongie, “DualSDF: Semantic shape manipulation using a two-level representation,” in Proc. IEEE/CVF Conf. Comput. Vis. Patern. Recognit., 2020, pp. 7628–7638.
  69. H. Seada and K. Deb, “A unified evolutionary optimization procedure for single, multiple, and many objectives,” IEEE Trans. Evol. Comput, vol. 20, no. 3, pp. 358–369, 2016.
  70. Y. Vesikar, K. Deb, and J. Blank, “Reference point based NSGA-III for preferred solutions,” in Proc. IEEE Symp. Ser. Comput. Intell., 2018, pp. 1587–1594.
  71. Íñigo Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-Hidalgo, S. Bøgh, and N. Arana-Arexolaleiba, “A review on reinforcement learning for contact-rich robotic manipulation tasks,” Robotics and Computer-Integrated Manufacturing, vol. 81, p. 102517, 2023.
  72. E. Coronado, T. Kiyokawa, G. A. G. Ricardez, I. G. Ramirez-Alpizar, G. Venture, and N. Yamanobe, “Evaluating quality in human-robot interaction: a systematic search and classification of performance and human-centered factors, measures and metrics towards an Industry 5.0,” J. Manuf. Syst., vol. 63, pp. 392–410, 2022.
  73. K. Takata, T. Kiyokawa, I. G. Ramirez-Alpizar, N. Yamanobe, W. Wan, and K. Harada, “Efficient task/motion planning for a dual-arm robot from language instructions and cooking images,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 12 058–12 065.
  74. M. S. Sakib, D. Paulius, and Y. Sun, “Approximate task tree retrieval in a knowledge network for robotic cooking,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 11 492–11 499, 2022.
  75. K. Takata, T. Kiyokawa, I. G. Ramirez-Alpizar, N. Yamanobe, W. Wan, and K. Harada, “Graph based framework on bimanual manipulation planning from cooking recipe,” Robotics, vol. 11, no. 6, 2022.
  76. Z. Wang, T. Kiyokawa, I. Sera, N. Yamanobe, W. Wan, and K. Harada, “Error correction in robotic assembly planning from graphical instruction manuals,” IEEE Access, vol. 11, pp. 107 276–107 286, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.