Many-Objective-Optimized Semi-Automated Robotic Disassembly Sequences (2401.01817v1)
Abstract: This study tasckles the problem of many-objective sequence optimization for semi-automated robotic disassembly operations. To this end, we employ a many-objective genetic algorithm (MaOGA) algorithm inspired by the Non-dominated Sorting Genetic Algorithm (NSGA)-III, along with robotic-disassembly-oriented constraints and objective functions derived from geometrical and robot simulations using 3-dimensional (3D) geometrical information stored in a 3D Computer-Aided Design (CAD) model of the target product. The MaOGA begins by generating a set of initial chromosomes based on a contact and connection graph (CCG), rather than random chromosomes, to avoid falling into a local minimum and yield repeatable convergence. The optimization imposes constraints on feasibility and stability as well as objective functions regarding difficulty, efficiency, prioritization, and allocability to generate a sequence that satisfies many preferred conditions under mandatory requirements for semi-automated robotic disassembly. The NSGA-III-inspired MaOGA also utilizes non-dominated sorting and niching with reference lines to further encourage steady and stable exploration and uniformly lower the overall evaluation values. Our sequence generation experiments for a complex product (36 parts) demonstrated that the proposed method can consistently produce feasible and stable sequences with a 100% success rate, bringing the multiple preferred conditions closer to the optimal solution required for semi-automated robotic disassembly operations.
- H. Poschmann, H. Brüggemann, and D. Goldmann, “Disassembly 4.0: A review on using robotics in disassembly tasks as a way of automation,” Chemie Ingenieur Technik, vol. 92, no. 4, pp. 341–359, 2020.
- M. Daneshmand, F. Noroozi, C. Corneanu, F. Mafakheri, and P. Fiorini, “Industry 4.0 and prospects of circular economy: a survey of robotic assembly and disassembly,” The Int. J. Adv. Manuf. Tech., vol. 124, pp. 1–28, 2022.
- S. Lou, R. Tan, Y. Zhang, and C. Lv, “Human-robot interactive disassembly planning in industry 5.0*,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mech., 2023, pp. 891–895.
- G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel, “Learning robotic assembly from CAD,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 3524–3531.
- K. Tariki, T. Kiyokawa, T. Nagatani, J. Takamatsu, and T. Ogasawara, “Generating complex assembly sequences from 3D CAD models considering insertion relations,” Adv. Robot., vol. 35, no. 6, pp. 337–348, 2021.
- F. Chervinskii, S. Zobov, A. Rybnikov, D. Petrov, and K. Vendidandi, “Auto-Assembly: a framework for automated robotic assembly directly from CAD,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 11 294–11 300.
- Y. Koga, H. Kerrick, and S. Chitta, “On CAD informed adaptive robotic assembly,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 10 207–10 214.
- M. Goldwasser, J.-C. Latombe, and R. Motwani, “Complexity measures for assembly sequences,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 2, 1996, pp. 1851–1857.
- W. H. Chen, K. Wegener, and F. Dietrich, “A robot assistant for unscrewing in hybrid human-robot disassembly,” in Proc. IEEE Int. Conf. Robot. Biomim., 2014, pp. 536–541.
- S. Parsa and M. Saadat, “Human-robot collaboration disassembly planning for end-of-life product disassembly process,” Robot. Comput.-Integr. Manuf., vol. 71, p. 102170, 2021.
- H.-y. Liao, Y. Chen, B. Hu, and S. Behdad, “Optimization-based disassembly sequence planning under uncertainty for human–robot collaboration,” J. Mech. Des., vol. 145, no. 2, p. 022001, 2022.
- S. Hjorth, E. Lamon, D. Chrysostomou, and A. Ajoudani, “Design of an energy-aware cartesian impedance controller for collaborative disassembly,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 7483–7489.
- M.-L. Lee, W. Liu, S. Behdad, X. Liang, and M. Zheng, “Robot-assisted disassembly sequence planning with real-time human motion prediction,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 1, pp. 438–450, 2023.
- X. Guo, C. Fan, M. Zhou, S. Liu, J. Wang, S. Qin, and Y. Tang, “Human–robot collaborative disassembly line balancing problem with stochastic operation time and a solution via multi-objective shuffled frog leaping algorithm,” IEEE Trans. Autom. Sci. Eng., pp. 1–12, 2023.
- K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints,” IEEE Trans. Evol. Comput, vol. 18, no. 4, pp. 577–601, 2014.
- L. Homem de Mello and A. Sanderson, “Planning repair sequences using the AND/OR graph representation of assembly plans,” in Proc. IEEE Int. Conf. Robot. Autom., 1988, pp. 1861–1862.
- S. Lee and H. Moradi, “Disassembly sequencing and assembly sequence verification using force flow networks,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 4, 1999, pp. 2762–2767.
- S. Sundaram, I. Remmler, and N. Amato, “Disassembly sequencing using a motion planning approach,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 2, 2001, pp. 1475–1480.
- D. T. Le, J. Cortes, and T. Simeon, “A path planning approach to (dis)assembly sequencing,” in Proc. IEEE Int. Conf. Autom. Sci. Eng., 2009, pp. 286–291.
- X. Zhao, C. Li, Y. Tang, and J. Cui, “Reinforcement learning-based selective disassembly sequence planning for the end-of-life products with structure uncertainty,” IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 7807–7814, 2021.
- T. Kiyokawa, J. Takamatsu, and T. Ogasawara, “Assembly sequences based on multiple criteria against products with deformable parts,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 975–981.
- Y. Laili, X. Li, Y. Wang, L. Ren, and X. Wang, “Robotic disassembly sequence planning with backup actions,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 2095–2107, 2022.
- S. Dorn, N. Wolpert, and E. Schömer, “An assembly sequence planning framework for complex data using general voronoi diagram,” in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 9896–9902.
- K. Wang, L. Gao, X. Li, and P. Li, “Energy-efficient robotic parallel disassembly sequence planning for end-of-life products,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 2, pp. 1277–1285, 2022.
- Y. Tian, J. Xu, Y. Li, J. Luo, S. Sueda, H. Li, K. D. Willis, and W. Matusik, “Assemble them all: Physics-based planning for generalizable assembly by disassembly,” ACM Trans. Graph., vol. 41, no. 6, 2022.
- K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.
- T. Ebinger, S. Kaden, S. Thomas, R. Andre, N. M. Amato, and U. Thomas, “A general and flexible search framework for disassembly planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 3548–3555.
- K.-M. Lee and M. Bailey-van Kuren, “Modeling and supervisory control of a disassembly automation workcell based on blocking topology,” IEEE Trans. Robot. Autom., vol. 16, no. 1, pp. 67–77, 2000.
- A. Cebulla, T. Asfour, and T. Kröger, “Speeding up assembly sequence planning through learning removability probabilities,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 12 388–12 394.
- L. Ma, J. Gong, H. Xu, H. Chen, H. Zhao, W. Huang, and G. Zhou, “Planning assembly sequence with graph transformer,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 12 395–12 401.
- Y. Ren, H. Jin, F. Zhao, T. Qu, L. Meng, C. Zhang, B. Zhang, G. Wang, and J. W. Sutherland, “A multiobjective disassembly planning for value recovery and energy conservation from end-of-life products,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 791–803, 2021.
- P. Dario, M. Rucci, C. Guadagnini, and C. Laschi, “An investigation on a robot system for disassembly automation,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 4, 1994, pp. 3515–3521.
- K. Hohm, H. Muller Hofstede, and H. Tolle, “Robot assisted disassembly of electronic devices,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 2, 2000, pp. 1273–1278.
- E. Zussman and M. C. Zhou, “Design and implementation of an adaptive process planner for disassembly processes,” IEEE Trans. Robot. Autom., vol. 16, no. 2, pp. 171–179, 2000.
- D.-H. Kim, S.-J. Lim, D.-H. Lee, J. Y. Lee, and C.-S. Han, “A RRT-based motion planning of dual-arm robot for (dis)assembly tasks,” in Proc. IEEE Int. Symp. Robot, 2013, pp. 1–6.
- I. Rodrıguez, K. Nottensteiner, D. Leidner, M. Kaßecker, F. Stulp, and A. Albu-Schäffer, “Iteratively refined feasibility checks in robotic assembly sequence planning,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1416–1423, 2019.
- T. Bachmann, K. Nottensteiner, and M. A. Roa, “Automated planning of workcell layouts considering task sequences,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 12 662–12 668.
- M. Atad, J. Feng, I. Rodríguez, M. Durner, and R. Triebel, “Efficient and feasible robotic assembly sequence planning via graph representation learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023.
- J. Liu, Z. Zhou, D. T. Pham, W. Xu, C. Ji, and Q. Liu, “Collaborative optimization of robotic disassembly sequence planning and robotic disassembly line balancing problem using improved discrete bees algorithm in remanufacturing,” Robot. Comput.-Integr. Manuf., vol. 61, p. 101829, 2020.
- J. Liu, Z. Xu, H. Xiong, Q. Lin, W. Xu, and Z. Zhou, “Digital twin-driven robotic disassembly sequence dynamic planning under uncertain missing condition,” IEEE Trans. Ind. Info., vol. 19, no. 12, pp. 11 846–11 855, 2023.
- K. Zakka, A. Zeng, J. Lee, and S. Song, “Form2Fit: Learning shape priors for generalizable assembly from disassembly,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 9404–9410.
- Y. Lee, E. S. Hu, and J. J. Lim, “IKEA furniture assembly environment for long-horizon complex manipulation tasks,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 6343–6349.
- O. Aslan, B. Bolat, B. Bal, T. Tumer, E. Sahin, and S. Kalkan, “AssembleRL: Learning to assemble furniture from their point clouds,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 2748–2753.
- M. Qu, Y. Wang, and D. T. Pham, “Robotic disassembly task training and skill transfer using reinforcement learning,” IEEE Trans. Ind. Info., vol. 19, no. 11, pp. 10 934–10 943, 2023.
- J. Borràs, R. Heudorfer, S. Rader, P. Kaiser, and T. Asfour, “The KIT swiss knife gripper for disassembly tasks: A multi-functional gripper for bimanual manipulation with a single arm,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 4590–4597.
- C. Klas, F. Hundhausen, J. Gao, C. R. G. Dreher, S. Reither, Y. Zhou, and T. Asfour, “The KIT gripper: A multi-functional gripper for disassembly tasks,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 715–721.
- M. Wurster, M. Michel, M. C. May, A. Kuhnle, N. Stricker, and G. Lanza, “Modelling and condition-based control of a flexible and hybrid disassembly system with manual and autonomous workstations using reinforcement learning,” J. Intell. Manuf., vol. 33, 2022.
- Y. Zhang, H. Zhang, Z. Wang, S. Zhang, H. Li, and M. Chen, “Development of an autonomous, explainable, robust robotic system for electric vehicle battery disassembly,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mech., 2023, pp. 409–414.
- G. Gorjup, G. Gao, A. Dwivedi, and M. Liarokapis, “Combining compliance control, CAD based localization, and a multi-modal gripper for rapid and robust programming of assembly tasks,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 9064–9071.
- W. Wan and K. Harada, “Regrasp planning using 10,000s of grasps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2017, pp. 1929–1936.
- R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung, “Make it stand: Balancing shapes for 3D fabrication,” ACM Trans. Graph., vol. 32, no. 4, 2013.
- K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “ZMP analysis for arm/leg coordination,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 1, 2003, pp. 75–81.
- T. Kiyokawa, T. Sakuma, J. Takamatsu, and T. Ogasawara, “Soft-jig-driven assembly operations,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 3466–3472.
- J. Blank, K. Deb, and P. C. Roy, “Investigating the normalization procedure of NSGA-III,” in Pro. Evolutionary Multi-Criterion Optimization, 2019, pp. 229–240.
- T. Kiyokawa, N. Shirakura, Z. Wang, N. Yamanobe, I. G. Ramirez-Alpizar, W. Wan, and K. Harada, “Difficulty and complexity definitions for assembly task allocation and assignment in human–robot collaborations: A review,” Robot. Comput. Integr. Manuf., vol. 84, p. 102598, 2023.
- T. Yoshikawa, Y. Yokokohji, and Y. Yu, “Assembly planning operation strategies based on the degree of constraint,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 1991, pp. 682–687.
- “Industrial robotics category assembly challenge rules and regulations 2018,” The Industrial Robotics Competition Committee, October 2018. [Online]. Available: https://worldrobotsummit.org/download/rulebook-en/rulebook-Assembly_Challenge.pdf
- Z. Hu, W. Wan, K. Koyama, and K. Harada, “A mechanical screwing tool for parallel grippers—design, optimization, and manipulation policies,” IEEE Trans. Robot., vol. 38, no. 2, pp. 1139–1159, 2022.
- W. Wan, K. Harada, and F. Kanehiro, “Planning grasps with suction cups and parallel grippers using superimposed segmentation of object meshes,” IEEE Trans. Robot., vol. 37, no. 1, pp. 166–184, 2021.
- J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 2, 2000, pp. 995–1001.
- R. Diankov, “Automated construction of robotic manipulation programs,” Ph.D. dissertation, Carnegie Mellon University, Robotics Institute, August 2010.
- T. Sakuma, T. Kiyokawa, J. Takamatsu, T. Wada, and T. Ogasawara, “Soft-Jig: A flexible sensing jig for simultaneously fixing and estimating orientation of assembly parts,” in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 10 945–10 950.
- T. Sakuma, T. Kiyokawa, T. Matsubara, J. Takamatsu, T. Wada, and T. Ogasawara, “Jamming gripper-inspired soft jig for perceptive parts fixing,” IEEE Access, vol. 11, pp. 62 187–62 199, 2023.
- C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D classification and segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern. Recognit., 2017, pp. 652–660.
- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature learning on point sets in a metric space,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 5105–5114.
- G. Qian, Y. Li, H. Peng, J. Mai, H. Hammoud, M. Elhoseiny, and B. Ghanem, “PointNeXt: Revisiting PointNet++ with improved training and scaling strategies,” in Proc. Adv. Neural Inf. Process. Syst., 2022.
- J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “DeepSDF: Learning continuous signed distance functions for shape representation,” in Proc. IEEE/CVF Conf. Comput. Vis. Patern. Recognit., 2019, pp. 165–174.
- Z. Hao, H. Averbuch-Elor, N. Snavely, and S. Belongie, “DualSDF: Semantic shape manipulation using a two-level representation,” in Proc. IEEE/CVF Conf. Comput. Vis. Patern. Recognit., 2020, pp. 7628–7638.
- H. Seada and K. Deb, “A unified evolutionary optimization procedure for single, multiple, and many objectives,” IEEE Trans. Evol. Comput, vol. 20, no. 3, pp. 358–369, 2016.
- Y. Vesikar, K. Deb, and J. Blank, “Reference point based NSGA-III for preferred solutions,” in Proc. IEEE Symp. Ser. Comput. Intell., 2018, pp. 1587–1594.
- Íñigo Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-Hidalgo, S. Bøgh, and N. Arana-Arexolaleiba, “A review on reinforcement learning for contact-rich robotic manipulation tasks,” Robotics and Computer-Integrated Manufacturing, vol. 81, p. 102517, 2023.
- E. Coronado, T. Kiyokawa, G. A. G. Ricardez, I. G. Ramirez-Alpizar, G. Venture, and N. Yamanobe, “Evaluating quality in human-robot interaction: a systematic search and classification of performance and human-centered factors, measures and metrics towards an Industry 5.0,” J. Manuf. Syst., vol. 63, pp. 392–410, 2022.
- K. Takata, T. Kiyokawa, I. G. Ramirez-Alpizar, N. Yamanobe, W. Wan, and K. Harada, “Efficient task/motion planning for a dual-arm robot from language instructions and cooking images,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 12 058–12 065.
- M. S. Sakib, D. Paulius, and Y. Sun, “Approximate task tree retrieval in a knowledge network for robotic cooking,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 11 492–11 499, 2022.
- K. Takata, T. Kiyokawa, I. G. Ramirez-Alpizar, N. Yamanobe, W. Wan, and K. Harada, “Graph based framework on bimanual manipulation planning from cooking recipe,” Robotics, vol. 11, no. 6, 2022.
- Z. Wang, T. Kiyokawa, I. Sera, N. Yamanobe, W. Wan, and K. Harada, “Error correction in robotic assembly planning from graphical instruction manuals,” IEEE Access, vol. 11, pp. 107 276–107 286, 2023.