Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hamiltonicity of Schrijver graphs and stable Kneser graphs (2401.01681v1)

Published 3 Jan 2024 in math.CO and cs.DM

Abstract: For integers $k\geq 1$ and $n\geq 2k+1$, the Schrijver graph $S(n,k)$ has as vertices all $k$-element subsets of $[n]:={1,2,\ldots,n}$ that contain no two cyclically adjacent elements, and an edge between any two disjoint sets. More generally, for integers $k\geq 1$, $s\geq 2$, and $n \geq sk+1$, the $s$-stable Kneser graph $S(n,k,s)$ has as vertices all $k$-element subsets of $[n]$ in which any two elements are in cyclical distance at least $s$. We prove that all the graphs $S(n,k,s)$, in particular Schrijver graphs $S(n,k)=S(n,k,2)$, admit a Hamilton cycle that can be computed in time $\mathcal{O}(n)$ per generated vertex.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. K. S. Booth. Lexicographically least circular substrings. Inform. Process. Lett., 10(4-5):240–242, 1980.
  2. Y. Chen and Z. Füredi. Hamiltonian Kneser graphs. Combinatorica, 22(1):147–149, 2002.
  3. Y. Chen. Triangle-free Hamiltonian Kneser graphs. J. Combin. Theory Ser. B, 89(1):1–16, 2003.
  4. P.-A Chen. On the multichromatic number of s𝑠sitalic_s-stable Kneser graphs. J. Graph Theory, 79(3):233–248, 2015.
  5. The Combinatorial Object Server: http://www.combos.org/schrijver.
  6. J. R. Johnson. An inductive construction for Hamilton cycles in Kneser graphs. Electron. J. Combin., 18(1):Paper 189, 12 pp., 2011.
  7. J. Jonsson. On the chromatic number of generalized stable Kneser graphs. https://people.kth.se/~jakobj/doc/submitted/stablekneser.pdf, 2012.
  8. L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319–324, 1978.
  9. F. Meunier. The chromatic number of almost stable Kneser hypergraphs. J. Combin. Theory Ser. A, 118(6):1820–1828, 2011.
  10. Kneser graphs are Hamiltonian. In STOC’23—Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages 963–970. ACM, New York, [2023] ©2023.
  11. Sparse Kneser graphs are Hamiltonian. J. Lond. Math. Soc. (2), 103(4):1253–1275, 2021.
  12. A. Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wisk. (3), 26(3):454–461, 1978.
Citations (1)

Summary

We haven't generated a summary for this paper yet.