Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Sharing among Resources within Electrical Distribution Systems: A Systematic Review (2401.01597v1)

Published 3 Jan 2024 in eess.SY and cs.SY

Abstract: The rapid increase in Electric Vehicle (EV) adoption provides a promising solution for reducing carbon emissions and fossil fuel dependency in transportation systems. However, the increasing numbers of EVs pose significant challenges to the electrical grids. In addition, the number of Distributed Energy Resources (DER) and Microgrids (MGs) is increasing on a global scale to meet the energy demand, consequently changing the energy infrastructure. Recently, energy-sharing methods have been proposed to share excess energy from DERs and EVs in Electric Vehicle Charging Infrastructure (EVCI) and MGs. Accommodating this sharing mechanism with the existing electrical distribution systems is a critical issue concerning the economic, reliability, and resilience aspects. This study examines the ever-changing field of EVCI and the critical role of peer-to-peer (P2P) energy trading in mitigating the problems with grid management that result from unorganized EV charging and intermittency in DER. Also, the possibility of energy sharing in electrical distribution systems for microgrids and EVCI on various energy-sharing methods and algorithms are discussed in detail. Furthermore, the application of market clearing algorithms like game theory, double auction theory, blockchain technology, optimization techniques, machine learning algorithms, and other models from the existing literature are presented. This paper discusses the policies, economic benefits, environmental impacts, societal advantages, and challenges in distribution systems related to sharing in EVCI and MGs. A roadmap for future research and sharing strategies is provided to guide policymakers, researchers, and industry stakeholders toward a sustainable, resilient, and efficient energy market by integrating P2P technology into EVCIs and MGs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (232)
  1. United Nations, “The sustainable development goals report 2023,” 2023.
  2. J. A. Leggett, “The united nations framework convention on climate change, the kyoto protocol, and the paris agreement: a summary,” UNFCC, New York, vol. 2, 2020.
  3. U. FCCC, “Fccc. cp/2015/l. 9/rev. 1: Adaptation of the paris agreement,” Adaptation of the Paris agreement, 2015.
  4. H. Ritchie, M. Roser, and P. Rosado, “Renewable energy,” Our World in Data, 2020, https://ourworldindata.org/renewable-energy.
  5. “Electricity market report 2023, , license: Cc by 4.0,” IEA, Paris, [Online]. Available : https://www.iea.org/reports/electricity-market-report-2023.
  6. “Global ev sales by scenario, 2020-2030,” IEA, Paris, [Online]. Available : https://www.iea.org/data-and-statistics/charts/global-ev-sales-by-scenario-2020-2030.
  7. H. Ritchie, P. Rosado, and M. Roser, “Energy production and consumption,” Our World in Data, 2020, https://ourworldindata.org/energy-production-consumption.
  8. S. Bimenyimana, C. Wang, A. Nduwamungu, G. N. O. Asemota, W. Utetiwabo, C.-L. Ho, J. D. D. Niyonteze, N. Hagumimana, T. Habineza, W. Bashir et al., “Integration of microgrids and electric vehicle technologies in the national grid as the key enabler to the sustainable development for rwanda,” International Journal of Photoenergy, vol. 2021, pp. 1–17, 2021.
  9. W. Wu and B. Lin, “Benefits of electric vehicles integrating into power grid,” Energy, vol. 224, p. 120108, 2021.
  10. A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and sustainable Energy reviews, vol. 90, pp. 402–411, 2018.
  11. A. Alsharif, C. W. Tan, R. Ayop, A. Dobi, and K. Y. Lau, “A comprehensive review of energy management strategy in vehicle-to-grid technology integrated with renewable energy sources,” Sustainable Energy Technologies and Assessments, vol. 47, p. 101439, 2021.
  12. S. P. Sathiyan, C. B. Pratap, A. A. Stonier, G. Peter, A. Sherine, K. Praghash, and V. Ganji, “Comprehensive assessment of electric vehicle development, deployment, and policy initiatives to reduce ghg emissions: Opportunities and challenges,” IEEE Access, vol. 10, pp. 53 614–53 639, 2022.
  13. H. Saboori, M. Mohammadi, and R. Taghe, “Virtual power plant (vpp), definition, concept, components and types,” in 2011 Asia-Pacific power and energy engineering conference.   IEEE, 2011, pp. 1–4.
  14. S. Ghavidel, L. Li, J. Aghaei, T. Yu, and J. Zhu, “A review on the virtual power plant: Components and operation systems,” in 2016 IEEE international conference on power system technology (POWERCON).   IEEE, 2016, pp. 1–6.
  15. S. Yu, F. Fang, Y. Liu, and J. Liu, “Uncertainties of virtual power plant: Problems and countermeasures,” Applied energy, vol. 239, pp. 454–470, 2019.
  16. W. Huang, N. Zhang, C. Kang, M. Li, and M. Huo, “From demand response to integrated demand response: Review and prospect of research and application,” Protection and Control of Modern Power Systems, vol. 4, pp. 1–13, 2019.
  17. B. Parrish, P. Heptonstall, R. Gross, and B. K. Sovacool, “A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response,” Energy Policy, vol. 138, p. 111221, 2020.
  18. X. Lu, K. Li, H. Xu, F. Wang, Z. Zhou, and Y. Zhang, “Fundamentals and business model for resource aggregator of demand response in electricity markets,” Energy, vol. 204, p. 117885, 2020.
  19. M. F. Akorede, H. Hizam, and E. Pouresmaeil, “Distributed energy resources and benefits to the environment,” Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 724–734, 2010.
  20. H. Jiayi, J. Chuanwen, and X. Rong, “A review on distributed energy resources and microgrid,” Renewable and Sustainable Energy Reviews, vol. 12, no. 9, pp. 2472–2483, 2008.
  21. J. Driesen and F. Katiraei, “Design for distributed energy resources,” IEEE power and energy magazine, vol. 6, no. 3, pp. 30–40, 2008.
  22. Y. Zhang, J. Wang, and Z. Li, “Uncertainty modeling of distributed energy resources: techniques and challenges,” Current Sustainable/Renewable Energy Reports, vol. 6, pp. 42–51, 2019.
  23. R. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromsom, A. S. Meliopoulous, R. Yinger, and J. Eto, “Integration of distributed energy resources. the certs microgrid concept,” Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2002.
  24. M. H. Saeed, W. Fangzong, B. A. Kalwar, and S. Iqbal, “A review on microgrids’ challenges & perspectives,” IEEE Access, vol. 9, pp. 166 502–166 517, 2021.
  25. K. V. S. M. Babu, D. Dwivedi, P. Chakraborty, P. K. Yemula, and M. Pal, “A resilient power distribution system using p2p energy sharing,” in 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), 2023, pp. 1–6.
  26. “Approximately 100 million households rely on rooftop solar pv by 2030,license: Cc by 4.0,” IEA, Paris, [Online]. Available : https://www.iea.org/reports/approximately-100-million-households-rely-on-rooftop-solar-pv-by-2030.
  27. P. IEA, “”battery storage capability by countries, 2020 and 2026”,” [online]. Available: https://www.iea.org/data-and-statistics/charts/battery-storage-capability-by-countries-2020-and-2026.
  28. W. Tushar, T. K. Saha, C. Yuen, D. Smith, and H. V. Poor, “Peer-to-peer trading in electricity networks: An overview,” IEEE transactions on smart grid, vol. 11, no. 4, pp. 3185–3200, 2020.
  29. G. Dileep, “A survey on smart grid technologies and applications,” Renewable energy, vol. 146, pp. 2589–2625, 2020.
  30. L.-C. Ye, J. F. Rodrigues, and H. X. Lin, “Analysis of feed-in tariff policies for solar photovoltaic in china 2011–2016,” Applied energy, vol. 203, pp. 496–505, 2017.
  31. S. Ayub, S. M. Ayob, C. W. Tan, M. Taimoor, L. Ayub, A. L. Bukar, and M. Daud, “Analysis of energy management schemes for renewable-energy-based smart homes against the backdrop of covid-19,” Sustainable Energy Technologies and Assessments, vol. 52, p. 102136, 2022.
  32. Y. Liu, L. Wu, and J. Li, “Peer-to-peer (p2p) electricity trading in distribution systems of the future,” The Electricity Journal, vol. 32, no. 4, pp. 2–6, 2019.
  33. “Global energy investment in clean energy and in fossil fuels, 2015-2023,” IEA, Paris, [Online]. Available : https://www.iea.org/data-and-statistics/charts/global-energy-investment-in-clean-energy-and-in-fossil-fuels-2015-2023.
  34. A. L. Bukar, C. W. Tan, K. Y. Lau, and A. Marwanto, “Economic analysis of residential grid-connected photovoltaic system with lithium-ion battery storage,” in 2019 IEEE Conference on Energy Conversion (CENCON).   IEEE, 2019, pp. 153–158.
  35. A. Pyrgou, A. Kylili, and P. A. Fokaides, “The future of the feed-in tariff (fit) scheme in europe: The case of photovoltaics,” Energy Policy, vol. 95, pp. 94–102, 2016.
  36. T. D. Couture, K. Cory, C. Kreycik, and E. Williams, “Policymaker’s guide to feed-in tariff policy design,” National Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2010.
  37. I. Prahastono, N. I. Sinisuka, M. Nurdin, and H. Nugraha, “A review of feed-in tariff model (fit) for photovoltaic (pv),” in 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS).   IEEE, 2019, pp. 076–079.
  38. L. Poruschi, C. L. Ambrey, and J. C. Smart, “Revisiting feed-in tariffs in australia: A review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 260–270, 2018.
  39. S. Alizamir, F. de Véricourt, and P. Sun, “Efficient feed-in-tariff policies for renewable energy technologies,” Operations Research, vol. 64, no. 1, pp. 52–66, 2016.
  40. P. Chakraborty, E. Baeyens, P. P. Khargonekar, K. Poolla, and P. Varaiya, “Analysis of solar energy aggregation under various billing mechanisms,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4175–4187, 2019.
  41. A. Poullikkas, G. Kourtis, and I. Hadjipaschalis, “A review of net metering mechanism for electricity renewable energy sources,” International Journal of Energy and Environment (Print), vol. 4, 2013.
  42. R. Dufo-López and J. L. Bernal-Agustín, “A comparative assessment of net metering and net billing policies. study cases for spain,” Energy, vol. 84, pp. 684–694, 2015.
  43. G. C. Christoforidis, I. P. Panapakidis, T. A. Papadopoulos, G. K. Papagiannis, I. Koumparou, M. Hadjipanayi, and G. E. Georghiou, “A model for the assessment of different net-metering policies,” Energies, vol. 9, no. 4, p. 262, 2016.
  44. D. Vieira, R. A. Shayani, and M. G. De Oliveira, “Net metering in brazil: regulation, opportunities and challenges,” IEEE Latin America Transactions, vol. 14, no. 8, pp. 3687–3694, 2016.
  45. N. R. Darghouth, G. Barbose, and R. Wiser, “The impact of rate design and net metering on the bill savings from distributed pv for residential customers in california,” Energy Policy, vol. 39, no. 9, pp. 5243–5253, 2011.
  46. S. Comello and S. Reichelstein, “Cost competitiveness of residential solar pv: The impact of net metering restrictions,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 46–57, 2017.
  47. C. Eid, J. R. Guillén, P. F. Marín, and R. Hakvoort, “The economic effect of electricity net-metering with solar pv: Consequences for network cost recovery, cross subsidies and policy objectives,” Energy Policy, vol. 75, pp. 244–254, 2014.
  48. J. W. Stoutenborough and M. Beverlin, “Encouraging pollution-free energy: The diffusion of state net metering policies,” Social Science Quarterly, vol. 89, no. 5, pp. 1230–1251, 2008.
  49. Y. Yamamoto, “Pricing electricity from residential photovoltaic systems: A comparison of feed-in tariffs, net metering, and net purchase and sale,” Solar energy, vol. 86, no. 9, pp. 2678–2685, 2012.
  50. R. Carmichael, R. Gross, R. Hanna, A. Rhodes, and T. Green, “The demand response technology cluster: Accelerating uk residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools,” Renewable and Sustainable Energy Reviews, vol. 139, p. 110701, 2021.
  51. C. A. Belton and P. D. Lunn, “Smart choices? an experimental study of smart meters and time-of-use tariffs in ireland,” Energy Policy, vol. 140, p. 111243, 2020.
  52. M. F. Sulaima, N. Y. Dahlan, Z. M. Yasin, M. M. Rosli, Z. Omar, and M. Y. Hassan, “A review of electricity pricing in peninsular malaysia: Empirical investigation about the appropriateness of enhanced time of use (etou) electricity tariff,” Renewable and Sustainable Energy Reviews, vol. 110, pp. 348–367, 2019.
  53. K. Li, L. Liu, F. Wang, T. Wang, N. Duić, M. Shafie-khah, and J. P. Catalão, “Impact factors analysis on the probability characterized effects of time of use demand response tariffs using association rule mining method,” Energy Conversion and Management, vol. 197, p. 111891, 2019.
  54. M. L. Nicolson, M. J. Fell, and G. M. Huebner, “Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence,” Renewable and Sustainable Energy Reviews, vol. 97, pp. 276–289, 2018.
  55. K. Steriotis, G. Tsaousoglou, N. Efthymiopoulos, P. Makris, and E. M. Varvarigos, “A novel behavioral real time pricing scheme for the active energy consumers’ participation in emerging flexibility markets,” Sustainable Energy, Grids and Networks, vol. 16, pp. 14–27, 2018.
  56. G. Tsaousoglou, N. Efthymiopoulos, P. Makris, and E. V. Arigos, “Personalized real time pricing for efficient and fair demand response in energy cooperatives and highly competitive flexibility markets,” Journal of Modern Power Systems and Clean Energy, vol. 7, no. 1, pp. 151–162, 2019.
  57. N. Rahbari-Asr, M.-Y. Chow, J. Chen, and R. Deng, “Distributed real-time pricing control for large-scale unidirectional v2g with multiple energy suppliers,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1953–1962, 2016.
  58. M. K. Mishra and S. K. Parida, “A game theoretic approach for demand-side management using real-time variable peak pricing considering distributed energy resources,” IEEE Systems Journal, vol. 16, no. 1, pp. 144–154, 2022.
  59. T. M. Aljohani, A. F. Ebrahim, and O. A. Mohammed, “Dynamic real-time pricing mechanism for electric vehicles charging considering optimal microgrids energy management system,” IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 5372–5381, 2021.
  60. R. Jinsiwale and D. Divan, “Decentralized real-time pricing to achieve integrated transactive and physical grids,” IEEE Access, vol. 7, pp. 132 525–132 541, 2019.
  61. K. Xue, Q. Yang, S. Li, D. S. L. Wei, M. Peng, I. Memon, and P. Hong, “Ppso: A privacy-preserving service outsourcing scheme for real-time pricing demand response in smart grid,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2486–2496, 2019.
  62. W. Wei, J. Wang, and L. Wu, “Distribution optimal power flow with real-time price elasticity,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 1097–1098, 2018.
  63. H. Seok and S.-P. Kim, “Pareto efficient incentive-based real-time pricing model for balanced smart grids,” IEEE Access, vol. 10, pp. 2766–2774, 2022.
  64. W. Chen, J. Qiu, and Q. Chai, “Customized critical peak rebate pricing mechanism for virtual power plants,” IEEE Transactions on Sustainable Energy, vol. 12, no. 4, pp. 2169–2183, 2021.
  65. X. Zhang, “Optimal scheduling of critical peak pricing considering wind commitment,” IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 637–645, 2014.
  66. S. Althaher, P. Mancarella, and J. Mutale, “Automated demand response from home energy management system under dynamic pricing and power and comfort constraints,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1874–1883, 2015.
  67. A. Masoumzadeh, E. Nekouei, and T. Alpcan, “Wind versus storage allocation for price management in wholesale electricity markets,” IEEE Transactions on Sustainable Energy, vol. 11, no. 2, pp. 817–827, 2020.
  68. Z. Zhao, Y. Liu, L. Guo, L. Bai, Z. Wang, and C. Wang, “Distribution locational marginal pricing under uncertainty considering coordination of distribution and wholesale markets,” IEEE Transactions on Smart Grid, vol. 14, no. 2, pp. 1590–1606, March 2023.
  69. M. Alizadeh, H.-T. Wai, A. Goldsmith, and A. Scaglione, “Retail and wholesale electricity pricing considering electric vehicle mobility,” IEEE Transactions on Control of Network Systems, vol. 6, no. 1, pp. 249–260, 2019.
  70. M. Vahid-Ghavidel, M. S. Javadi, S. F. Santos, M. Gough, B. Mohammadi-Ivatloo, M. Shafie-Khah, and J. P. S. Catalão, “Novel hybrid stochastic-robust optimal trading strategy for a demand response aggregator in the wholesale electricity market,” IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 5488–5498, 2021.
  71. A. Radovanovic, T. Nesti, and B. Chen, “A holistic approach to forecasting wholesale energy market prices,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4317–4328, 2019.
  72. A. Ravi, L. Bai, V. Cecchi, and F. Ding, “Stochastic strategic participation of active distribution networks with high-penetration ders in wholesale electricity markets,” IEEE Transactions on Smart Grid, vol. 14, no. 2, pp. 1515–1527, 2023.
  73. S.-V. Oprea, A. Bâra, D. Preotescu, R. A. Bologa, and L. Coroianu, “A trading simulator model for the wholesale electricity market,” IEEE Access, vol. 8, pp. 184 210–184 230, 2020.
  74. I. T. Emami, E. Samani, H. A. Abyaneh, H. Mohsenian-Rad, and A. Bakhshai, “A conceptual analysis of equilibrium bidding strategy in a combined oligopoly and oligopsony wholesale electricity market,” IEEE Transactions on Power Systems, vol. 37, no. 6, pp. 4229–4243, 2022.
  75. N. Nasiri, S. Zeynali, and S. N. Ravadanegh, “Tactical participation of a multienergy system in distributionally robust wholesale electricity market under high penetration of electric vehicles,” IEEE Systems Journal, vol. 17, no. 1, pp. 1465–1476, 2023.
  76. Y. Ghiassi-Farrokhfal, W. Ketter, and J. Collins, “Making green power purchase agreements more predictable and reliable for companies,” Decision Support Systems, vol. 144, p. 113514, 2021.
  77. Y. Ninomiya, A. Sasakawa, and S. Thomas, “Peer-to-peer (p2p) electricity trading and power purchasing agreements (ppas),” German Japanese Energy Transition Council (GJETC): Wuppertal, Tokyo, 2020.
  78. P. Edge, “An approximation of counterparty credit risk in long term power purchase agreements (ppas),” in 2015 12th International Conference on the European Energy Market (EEM), 2015, pp. 1–4.
  79. S. Hollmén, F. Levihn, and G. Martinsson, “When markets don’t deliver : – bilateral hedging by means of ppas in managing intertemporal price risks in power generation investments,” in 2022 18th International Conference on the European Energy Market (EEM), 2022, pp. 1–6.
  80. S. W. W. Shor, “Earning contract capacity payments for cogeneration plants,” IEEE Transactions on Industry Applications, vol. IA-23, no. 4, pp. 754–759, 1987.
  81. L. Söder, “Analysis of pricing and volumes in selective capacity markets,” IEEE Transactions on Power Systems, vol. 25, no. 3, pp. 1415–1422, 2010.
  82. L. Söder, E. Tómasson, A. Estanqueiro, D. Flynn, B.-M. Hodge, J. Kiviluoma, M. Korpås, E. Neau, A. Couto, D. Pudjianto et al., “Review of wind generation within adequacy calculations and capacity markets for different power systems,” Renewable and Sustainable Energy Reviews, vol. 119, p. 109540, 2020.
  83. A. Bublitz, D. Keles, F. Zimmermann, C. Fraunholz, and W. Fichtner, “A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms,” Energy Economics, vol. 80, pp. 1059–1078, 2019.
  84. E. Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, and C. Weinhardt, “Designing microgrid energy markets: A case study: The brooklyn microgrid,” Applied energy, vol. 210, pp. 870–880, 2018.
  85. “The green future of offshore wind hubs and hybrid connections,” [online]. Available: https://bornholmenergyisland.eu/en/.
  86. “We are the connection to a sustainable energy future.” [online]. Available: sonnengroup.com/sonnencommunity.
  87. “It is time to declare your independence,,” [online]. Available: https://vandebron.nl/.
  88. “Building a smarter energy future,” [online]. Available: https://piclo.energy/aboutwhitepaper.
  89. A. R. E. Agency, ““agl virtual trial of peer-to-peer energy trading,”,” [online]. Available: https://arena.gov.au/projects/agl-virtual-trial-peer-to-peer-trading/.
  90. R. Asseh, “Kansai electric leads study on blockchain use in distributed electric supply,” [online]. Available: https://coingeek.com/kansai-electric-leads-study-blockchain-use-distributed-electric-supply/.
  91. “Peer-to-peer (p2p) solar energy trading, a first-of-its-kind pilot project in delhi,” [online]. Available: https://www.powerledger.io/media/tata-power-ddl-rolls-out-live-peer-to-peer-p2p-solar-energy-trading-a-first-of-its-kind-pilot-project-in-delhi.
  92. “Peer-to-peer (p2p) energy trading in india,” [online]. Available: https://www.powerledger.io/clients/uttar-pradesh-government-india.
  93. “South korea to trial blockchain electricity market for consumers,” [online]. Available: https://www.zdnet.com/article/south-korea-to-trial-blockchain-electricity-market-for-consumers/.
  94. C. Zhang, T. Yang, and Y. Wang, “Peer-to-peer energy trading in a microgrid based on iterative double auction and blockchain,” Sustainable Energy, Grids and Networks, vol. 27, p. 100524, 2021.
  95. P. Angaphiwatchawal, P. Phisuthsaingam, and S. Chaitusaney, “A k-factor continuous double auction-based pricing mechanism for the p2p energy trading in a lv distribution system,” in 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).   IEEE, 2020, pp. 37–40.
  96. K. Chen, J. Lin, and Y. Song, “Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model,” Applied energy, vol. 242, pp. 1121–1133, 2019.
  97. P. Angaphiwatchawal, C. Sompoh, and S. Chaitusaney, “A multi-k double auction pricing mechanism for peer-to-peer energy trading market of prosumers,” Proceedings of the ECTI-CON, vol. 2021, 2021.
  98. G. Vieira and J. Zhang, “Peer-to-peer energy trading in a microgrid leveraged by smart contracts,” Renewable and Sustainable Energy Reviews, vol. 143, p. 110900, 2021.
  99. N. Wang, W. Xu, W. Shao, and Z. Xu, “A q-cube framework of reinforcement learning algorithm for continuous double auction among microgrids,” Energies, vol. 12, no. 15, p. 2891, 2019.
  100. S. Zhang, M. Pu, B. Wang, and B. Dong, “A privacy protection scheme of microgrid direct electricity transaction based on consortium blockchain and continuous double auction,” IEEE access, vol. 7, pp. 151 746–151 753, 2019.
  101. M. Zade, S. D. Lumpp, P. Tzscheutschler, and U. Wagner, “Satisfying user preferences in community-based local energy markets—auction-based clearing approaches,” Applied Energy, vol. 306, p. 118004, 2022.
  102. J. Kalbantner, K. Markantonakis, D. Hurley-Smith, R. N. Akram, and B. Semal, “P2pedge: a decentralised, scalable p2p architecture for energy trading in real-time,” Energies, vol. 14, no. 3, p. 606, 2021.
  103. A. M. Alabdullatif, E. H. Gerding, and A. Perez-Diaz, “Market design and trading strategies for community energy markets with storage and renewable supply,” Energies, vol. 13, no. 4, p. 972, 2020.
  104. U. Damisa, N. I. Nwulu, and P. Siano, “Towards blockchain-based energy trading: A smart contract implementation of energy double auction and spinning reserve trading,” Energies, vol. 15, no. 11, p. 4084, 2022.
  105. M. Foti and M. Vavalis, “Blockchain based uniform price double auctions for energy markets,” Applied Energy, vol. 254, p. 113604, 2019.
  106. J. G. Song, E. S. Kang, H. W. Shin, and J. W. Jang, “A smart contract-based p2p energy trading system with dynamic pricing on ethereum blockchain,” Sensors, vol. 21, no. 6, p. 1985, 2021.
  107. K. Y. Bandara, S. Thakur, and J. Breslin, “Flocking-based decentralised double auction for p2p energy trading within neighbourhoods,” International Journal of Electrical Power & Energy Systems, vol. 129, p. 106766, 2021.
  108. A. Kalakova, A. Zhanatbekov, A. Surash, H. K. Nunna, and S. Doolla, “Blockchain-based decentralized transactive energy auction model with demand response,” in 2021 IEEE Texas Power and Energy Conference (TPEC).   IEEE, 2021, pp. 1–6.
  109. U. R. Barbhaya, L. Vishwakarma, and D. Das, “Etradechain: Blockchain-based energy trading in local energy market (lem) using modified double auction protocol,” IEEE Transactions on Green Communications and Networking, 2023.
  110. W. Tushar, C. Yuen, T. K. Saha, T. Morstyn, A. C. Chapman, M. J. E. Alam, S. Hanif, and H. V. Poor, “Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges,” Applied energy, vol. 282, p. 116131, 2021.
  111. C. Park and T. Yong, “Comparative review and discussion on p2p electricity trading,” Energy Procedia, vol. 128, pp. 3–9, 2017, international Scientific Conference “Environmental and Climate Technologies”, CONECT 2017, 10-12 May 2017, Riga, Latvia.
  112. J. P. Ríos-Ocampo, S. Arango-Aramburo, and E. R. Larsen, “Renewable energy penetration and energy security in electricity markets,” International Journal of Energy Research, vol. 45, no. 12, pp. 17 767–17 783, 2021.
  113. S. Yao, P. Wang, and T. Zhao, “Transportable energy storage for more resilient distribution systems with multiple microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3331–3341, 2019.
  114. X. Li, C. Chen, Q. Xu, and C. Wen, “Resilience for communication faults in reactive power sharing of microgrids,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 2788–2799, 2021.
  115. Q. Zhou, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “Flexible division and unification control strategies for resilience enhancement in networked microgrids,” IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 474–486, 2020.
  116. Y. Zhao, J. Lin, Y. Song, and Y. Xu, “A hierarchical strategy for restorative self-healing of hydrogen-penetrated distribution systems considering energy sharing via mobile resources,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1388–1404, 2023.
  117. N. Spiliopoulos, I. Sarantakos, S. Nikkhah, G. Gkizas, D. Giaouris, P. Taylor, U. Rajarathnam, and N. Wade, “Peer-to-peer energy trading for improving economic and resilient operation of microgrids,” Renewable Energy, vol. 199, pp. 517–535, 2022.
  118. D. Dwivedi, P. K. Yemula, and M. Pal, “Evaluating the planning and operational resilience of electrical distribution systems with distributed energy resources using complex network theory,” Renewable Energy Focus, 2023.
  119. D. M. Reddy, D. Dwivedi, P. K. Yemula, and M. Pal, “Data-driven approach to form energy resilient smart microgrids with identification of vulnerable nodes in active electrical distribution network,” arXiv preprint arXiv:2208.11682, 2022.
  120. D. Dwivedi, S. B. Mitikiri, K. Babu, P. K. Yemula, V. L. Srininvas, P. Chakraborty, and M. Pal, “Advancements in enhancing resilience of electrical distribution systems: A review on frameworks, metrics, and technological innovations,” arXiv preprint arXiv:2311.07050, 2023.
  121. S. Yang, X. Hu, H. Wang, J. Ligao, L. Meng, W. Zhou, and H. Zhou, “A prosumer-based energy sharing mechanism of active distribution network considering household energy storage,” IEEE Access, vol. 10, pp. 113 839–113 849, 2022.
  122. E. A. Soto, L. B. Bosman, E. Wollega, and W. D. Leon-Salas, “Peer-to-peer energy trading: A review of the literature,” Applied Energy, vol. 283, p. 116268, 2021.
  123. A. L. Bukar, M. F. Hamza, S. Ayup, A. K. Abobaker, B. Modu, S. Mohseni, A. C. Brent, C. Ogbonnaya, K. Mustapha, and H. O. Idakwo, “Peer-to-peer electricity trading: A systematic review on currents development and perspectives,” Renewable Energy Focus, 2023.
  124. S. Sachan and P. P. Singh, “Charging infrastructure planning for electric vehicle in india: Present status and future challenges,” Regional Sustainability, vol. 3, no. 4, pp. 335–345, 2022.
  125. B. Al-Hanahi, I. Ahmad, D. Habibi, and M. A. Masoum, “Charging infrastructure for commercial electric vehicles: Challenges and future works,” IEEE Access, vol. 9, pp. 121 476–121 492, 2021.
  126. A. Das, S. D. Peu, M. A. M. Akanda, and A. R. M. T. Islam, “Peer-to-peer energy trading pricing mechanisms: Towards a comprehensive analysis of energy and network service pricing (nsp) mechanisms to get sustainable enviro-economical energy sector,” Energies, vol. 16, no. 5, p. 2198, 2023.
  127. I. Ullah, J. Zheng, A. Jamal, M. Zahid, M. Almoshageh, and M. Safdar, “Electric vehicles charging infrastructure planning: a review,” International Journal of Green Energy, pp. 1–19, 2023.
  128. D. Friedman, “The double auction market institution: A survey,” in The double auction market.   Routledge, 2018, pp. 3–26.
  129. P. Klemperer, “Auction theory: A guide to the literature,” Journal of economic surveys, vol. 13, no. 3, pp. 227–286, 1999.
  130. Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium blockchain for secure energy trading in industrial internet of things,” IEEE transactions on industrial informatics, vol. 14, no. 8, pp. 3690–3700, 2017.
  131. S. Aggarwal and N. Kumar, “A consortium blockchain-based energy trading for demand response management in vehicle-to-grid,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9480–9494, 2021.
  132. J. Yang, A. Paudel, and H. B. Gooi, “Compensation for power loss by a proof-of-stake consortium blockchain microgrid,” IEEE Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3253–3262, 2020.
  133. J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain, “Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains,” IEEE transactions on industrial informatics, vol. 13, no. 6, pp. 3154–3164, 2017.
  134. Z. Che, Y. Wang, J. Zhao, Y. Qiang, Y. Ma, and J. Liu, “A distributed energy trading authentication mechanism based on a consortium blockchain,” Energies, vol. 12, no. 15, p. 2878, 2019.
  135. R. Khalid, M. W. Malik, T. A. Alghamdi, and N. Javaid, “A consortium blockchain based energy trading scheme for electric vehicles in smart cities,” Journal of Information Security and Applications, vol. 63, p. 102998, 2021.
  136. Z. Fu, P. Dong, and Y. Ju, “An intelligent electric vehicle charging system for new energy companies based on consortium blockchain,” Journal of Cleaner Production, vol. 261, p. 121219, 2020.
  137. H. N. Abishu, A. M. Seid, Y. H. Yacob, T. Ayall, G. Sun, and G. Liu, “Consensus mechanism for blockchain-enabled vehicle-to-vehicle energy trading in the internet of electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 71, no. 1, pp. 946–960, 2021.
  138. Z. Li, S. Chen, and B. Zhou, “Electric vehicle peer-to-peer energy trading model based on smes and blockchain,” IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1–4, 2021.
  139. Y. Li and B. Hu, “An iterative two-layer optimization charging and discharging trading scheme for electric vehicle using consortium blockchain,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2627–2637, 2019.
  140. A. Sadiq, M. U. Javed, R. Khalid, A. Almogren, M. Shafiq, and N. Javaid, “Blockchain based data and energy trading in internet of electric vehicles,” IEEE Access, vol. 9, pp. 7000–7020, 2021.
  141. I. A. Umoren, S. S. A. Jaffary, M. Z. Shakir, K. Katzis, and H. Ahmadi, “Blockchain-based energy trading in electric-vehicle-enabled microgrids,” IEEE Consumer Electronics Magazine, vol. 9, no. 6, pp. 66–71, 2020.
  142. Z. Su, Y. Wang, Q. Xu, M. Fei, Y.-C. Tian, and N. Zhang, “A secure charging scheme for electric vehicles with smart communities in energy blockchain,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4601–4613, 2019.
  143. H. Liu, Y. Zhang, S. Zheng, and Y. Li, “Electric vehicle power trading mechanism based on blockchain and smart contract in v2g network,” IEEE Access, vol. 7, pp. 160 546–160 558, 2019.
  144. M. Sabounchi and J. Wei, “Towards resilient networked microgrids: Blockchain-enabled peer-to-peer electricity trading mechanism,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), 2017, pp. 1–5.
  145. H. R. Bokkisam, S. Singh, R. M. Acharya, and M. P. Selvan, “Blockchain-based peer-to-peer transactive energy system for community microgrid with demand response management,” CSEE Journal of Power and Energy Systems, vol. 8, no. 1, pp. 198–211, 2022.
  146. S. Seven, G. Yao, A. Soran, A. Onen, and S. M. Muyeen, “Peer-to-peer energy trading in virtual power plant based on blockchain smart contracts,” IEEE Access, vol. 8, pp. 175 713–175 726, 2020.
  147. A. Kumari, U. Chintukumar Sukharamwala, S. Tanwar, M. S. Raboaca, F. Alqahtani, A. Tolba, R. Sharma, I. Aschilean, and T. C. Mihaltan, “Blockchain-based peer-to-peer transactive energy management scheme for smart grid system,” Sensors, vol. 22, no. 13, p. 4826, 2022.
  148. N. Lasla, M. Al-Ammari, M. Abdallah, and M. Younis, “Blockchain based trading platform for electric vehicle charging in smart cities,” IEEE Open Journal of Intelligent Transportation Systems, vol. 1, pp. 80–92, 2020.
  149. G. van Leeuwen, T. AlSkaif, M. Gibescu, and W. van Sark, “An integrated blockchain-based energy management platform with bilateral trading for microgrid communities,” Applied Energy, vol. 263, p. 114613, 2020.
  150. P. W. Khan and Y.-C. Byun, “Blockchain-based peer-to-peer energy trading and charging payment system for electric vehicles,” Sustainability, vol. 13, no. 14, p. 7962, 2021.
  151. M. Zhang, F. Eliassen, A. Taherkordi, H.-A. Jacobsen, H.-M. Chung, and Y. Zhang, “Demand–response games for peer-to-peer energy trading with the hyperledger blockchain,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 1, pp. 19–31, 2022.
  152. K. Zhou, J. Chong, X. Lu, and S. Yang, “Credit-based peer-to-peer electricity trading in energy blockchain environment,” IEEE Transactions on Smart Grid, vol. 13, no. 1, pp. 678–687, 2022.
  153. S. Lee, H. Jin, S. H. Nengroo, and D. Har, “P2p power trading between nanogrid clusters exploiting electric vehicles and renewable energy sources,” in 2021 International Conference on Computational Science and Computational Intelligence (CSCI), 2021, pp. 1849–1855.
  154. M. I. Azim, W. Tushar, and T. K. Saha, “Coalition graph game-based p2p energy trading with local voltage management,” IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 4389–4402, 2021.
  155. A. Z. G. Seyyedi, E. Akbari, M. H. Atazadegan, S. M. Rashid, A. Niazazari, and S. Shahmoradi, “A stochastic tri-layer optimization framework for day-ahead scheduling of microgrids using cooperative game theory approach in the presence of electric vehicles,” Journal of Energy Storage, vol. 52, p. 104719, 2022.
  156. K. V. S. M. Babu, D. Dwivedi, P. Chakraborty, P. K. Yemula, and M. Pal, “A resilient power distribution system using p2p energy sharing,” in 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET).   IEEE, 2023, pp. 1–6.
  157. W. Zhong, S. Xie, K. Xie, Q. Yang, and L. Xie, “Cooperative p2p energy trading in active distribution networks: An milp-based nash bargaining solution,” IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1264–1276, 2021.
  158. W. Amin, Q. Huang, K. Umer, Z. Zhang, M. Afzal, A. A. Khan, and S. A. Ahmed, “A motivational game-theoretic approach for peer-to-peer energy trading in islanded and grid-connected microgrid,” International journal of electrical power & energy systems, vol. 123, p. 106307, 2020.
  159. A. M. Jadhav, N. R. Patne, and J. M. Guerrero, “A novel approach to neighborhood fair energy trading in a distribution network of multiple microgrid clusters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1520–1531, 2019.
  160. S. Cui, Y.-W. Wang, and J.-W. Xiao, “Peer-to-peer energy sharing among smart energy buildings by distributed transaction,” IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6491–6501, 2019.
  161. D. Kalathil, C. Wu, K. Poolla, and P. Varaiya, “The sharing economy for the electricity storage,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 556–567, 2019.
  162. Ö. Erol and Ü. B. Filik, “A stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities,” Applied Energy, vol. 316, p. 118944, 2022.
  163. Y. Chen, N. Liu, L. Chen, and X. Yu, “Region-to-region energy sharing for prosumer clusters in distribution network: A multi-leaders and multi-followers stackelberg game,” IEEE Transactions on Energy Markets, Policy and Regulation, vol. 1, no. 4, pp. 398–409, 2023.
  164. M. Adil, M. P. Mahmud, A. Z. Kouzani, and S. Khoo, “Energy trading among electric vehicles based on stackelberg approaches: A review,” Sustainable Cities and Society, vol. 75, p. 103199, 2021.
  165. K. Anoh, S. Maharjan, A. Ikpehai, Y. Zhang, and B. Adebisi, “Energy peer-to-peer trading in virtual microgrids in smart grids: A game-theoretic approach,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1264–1275, 2019.
  166. M. Yan, M. Shahidehpour, A. Paaso, L. Zhang, A. Alabdulwahab, and A. Abusorrah, “Distribution network-constrained optimization of peer-to-peer transactive energy trading among multi-microgrids,” IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1033–1047, 2021.
  167. D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology overview,” arXiv preprint arXiv:1906.11078, 2019.
  168. T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba, “Blockchain technology innovations,” in 2017 IEEE Technology & Engineering Management Conference (TEMSCON), 2017, pp. 137–141.
  169. Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain technology: Architecture, consensus, and future trends,” in 2017 IEEE International Congress on Big Data (BigData Congress), 2017, pp. 557–564.
  170. D. Efanov and P. Roschin, “The all-pervasiveness of the blockchain technology,” Procedia computer science, vol. 123, pp. 116–121, 2018.
  171. M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. McCallum, and A. Peacock, “Blockchain technology in the energy sector: A systematic review of challenges and opportunities,” Renewable and sustainable energy reviews, vol. 100, pp. 143–174, 2019.
  172. M. K. Thukral, “Emergence of blockchain-technology application in peer-to-peer electrical-energy trading: A review,” Clean Energy, vol. 5, no. 1, pp. 104–123, 2021.
  173. D. Qiu, Y. Ye, D. Papadaskalopoulos, and G. Strbac, “Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach,” Applied energy, vol. 292, p. 116940, 2021.
  174. T. Chen, S. Bu, X. Liu, J. Kang, F. R. Yu, and Z. Han, “Peer-to-peer energy trading and energy conversion in interconnected multi-energy microgrids using multi-agent deep reinforcement learning,” IEEE Transactions on Smart Grid, vol. 13, no. 1, pp. 715–727, 2022.
  175. D. J. Harrold, J. Cao, and Z. Fan, “Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning,” Applied Energy, vol. 318, p. 119151, 2022.
  176. X. Fang, Q. Zhao, J. Wang, Y. Han, and Y. Li, “Multi-agent deep reinforcement learning for distributed energy management and strategy optimization of microgrid market,” Sustainable cities and society, vol. 74, p. 103163, 2021.
  177. H. Zhou, A. Aral, I. Brandić, and M. Erol-Kantarci, “Multiagent bayesian deep reinforcement learning for microgrid energy management under communication failures,” IEEE Internet of Things Journal, vol. 9, no. 14, pp. 11 685–11 698, 2022.
  178. Y. Ye, D. Papadaskalopoulos, Q. Yuan, Y. Tang, and G. Strbac, “Multi-agent deep reinforcement learning for coordinated energy trading and flexibility services provision in local electricity markets,” IEEE Transactions on Smart Grid, vol. 14, no. 2, pp. 1541–1554, 2023.
  179. L. Yang, Q. Sun, N. Zhang, and Y. Li, “Indirect multi-energy transactions of energy internet with deep reinforcement learning approach,” IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4067–4077, 2022.
  180. D. Qiu, J. Wang, Z. Dong, Y. Wang, and G. Strbac, “Mean-field multi-agent reinforcement learning for peer-to-peer multi-energy trading,” IEEE Transactions on Power Systems, vol. 38, no. 5, pp. 4853–4866, 2023.
  181. B. Tan and H. Chen, “Multi-objective energy management of multiple microgrids under random electric vehicle charging,” Energy, vol. 208, p. 118360, 2020.
  182. S. Shukla, S. Hussain, R. R. Irshad, A. A. Alattab, S. Thakur, J. G. Breslin, M. F. Hassan, S. Abimannan, S. Husain, and S. M. Jameel, “Network analysis in a peer-to-peer energy trading model using blockchain and machine learning,” Computer Standards & Interfaces, p. 103799, 2023.
  183. L. J. Varghese, K. Dhayalini, S. S. Jacob, I. Ali, A. Abdelmaboud, and T. A. E. Eisa, “Optimal load forecasting model for peer-to-peer energy trading in smart grids,” Comput. Mater. Contin, vol. 70, no. 1, pp. 1053–1067, 2022.
  184. H. Zang and J. Kim, “Reinforcement learning based peer-to-peer energy trade management using community energy storage in local energy market,” Energies, vol. 14, no. 14, p. 4131, 2021.
  185. F. S. Ali, O. Bouachir, . Özkasap, and M. Aloqaily, “Synergychain: Blockchain-assisted adaptive cyber-physical p2p energy trading,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5769–5778, 2021.
  186. S. Zhou, Z. Hu, W. Gu, M. Jiang, and X.-P. Zhang, “Artificial intelligence based smart energy community management: A reinforcement learning approach,” CSEE Journal of Power and Energy Systems, vol. 5, no. 1, pp. 1–10, 2019.
  187. M. A. Ferrag and L. Maglaras, “Deepcoin: A novel deep learning and blockchain-based energy exchange framework for smart grids,” IEEE Transactions on Engineering Management, vol. 67, no. 4, pp. 1285–1297, 2020.
  188. R. Iacobucci and R. Bruno, “Cascaded model predictive control for shared autonomous electric vehicles systems with v2g capabilities,” in 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2019, pp. 1–7.
  189. Y. B. Heng, V. K. Ramachandaramurthy, R. Verayiah, and S. L. Walker, “Developing peer-to-peer (p2p) energy trading model for malaysia: A review and proposed implementation,” IEEE Access, vol. 10, pp. 33 183–33 199, 2022.
  190. M. Ehjaz, M. Iqbal, S. S. H. Zaidi, and B. M. Khan, “A novel scheme for p2p energy trading considering energy congestion in microgrid,” IEEE Access, vol. 9, pp. 147 649–147 664, 2021.
  191. M. Sanayha and P. Vateekul, “Model-based approach on multi-agent deep reinforcement learning with multiple clusters for peer-to-peer energy trading,” IEEE Access, vol. 10, pp. 127 882–127 893, 2022.
  192. J. Li, M. E. Khodayar, J. Wang, and B. Zhou, “Data-driven distributionally robust co-optimization of p2p energy trading and network operation for interconnected microgrids,” IEEE Transactions on Smart Grid, vol. 12, no. 6, pp. 5172–5184, 2021.
  193. Y. Jia, C. Wan, P. Yu, Y. Song, and P. Ju, “Security constrained p2p energy trading in distribution network: An integrated transaction and operation model,” IEEE Transactions on Smart Grid, vol. 13, no. 6, pp. 4773–4786, 2022.
  194. D.-H. Park, J.-B. Park, K. Y. Lee, S.-Y. Son, and J. H. Roh, “A bidding-based peer-to-peer energy transaction model considering the green energy preference in virtual energy community,” IEEE Access, vol. 9, pp. 87 410–87 419, 2021.
  195. L. Ali, S. Muyeen, H. Bizhani, and A. Ghosh, “A multi-objective optimization for planning of networked microgrid using a game theory for peer-to-peer energy trading scheme,” IET Generation, Transmission & Distribution, vol. 15, no. 24, pp. 3423–3434, 2021.
  196. Z. Wang, X. Yu, Y. Mu, H. Jia, Q. Jiang, and X. Wang, “Peer-to-peer energy trading strategy for energy balance service provider (ebsp) considering market elasticity in community microgrid,” Applied Energy, vol. 303, p. 117596, 2021.
  197. O. Jogunola, W. Wang, and B. Adebisi, “Prosumers matching and least-cost energy path optimisation for peer-to-peer energy trading,” IEEE Access, vol. 8, pp. 95 266–95 277, 2020.
  198. H. Zhang, S. Zhang, X. Hu, H. Cheng, Q. Gu, and M. Du, “Parametric optimization-based peer-to-peer energy trading among commercial buildings considering multiple energy conversion,” Applied Energy, vol. 306, p. 118040, 2022.
  199. K. Umer, Q. Huang, M. Khorasany, M. Afzal, and W. Amin, “A novel communication efficient peer-to-peer energy trading scheme for enhanced privacy in microgrids,” Applied Energy, vol. 296, p. 117075, 2021.
  200. S. Abapour, M. Nazari-Heris, B. Mohammadi-Ivatloo, and M. Tarafdar Hagh, “Game theory approaches for the solution of power system problems: A comprehensive review,” Archives of computational methods in engineering, vol. 27, pp. 81–103, 2020.
  201. W. Tushar, C. Yuen, H. Mohsenian-Rad, T. Saha, H. V. Poor, and K. L. Wood, “Transforming energy networks via peer-to-peer energy trading: The potential of game-theoretic approaches,” IEEE Signal Processing Magazine, vol. 35, no. 4, pp. 90–111, 2018.
  202. H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “Machine learning basics,” Deep learning, pp. 98–164, 2016.
  203. B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science and Research (IJSR).[Internet], vol. 9, no. 1, pp. 381–386, 2020.
  204. S. M. Miraftabzadeh, F. Foiadelli, M. Longo, and M. Pasetti, “A survey of machine learning applications for power system analytics,” in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2019, pp. 1–5.
  205. L. Cheng and T. Yu, “A new generation of ai: A review and perspective on machine learning technologies applied to smart energy and electric power systems,” International Journal of Energy Research, vol. 43, no. 6, pp. 1928–1973, 2019.
  206. Y. Chen, Y. Tan, and D. Deka, “Is machine learning in power systems vulnerable?” in 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2018, pp. 1–6.
  207. R. Vaish, U. Dwivedi, S. Tewari, and S. M. Tripathi, “Machine learning applications in power system fault diagnosis: Research advancements and perspectives,” Engineering Applications of Artificial Intelligence, vol. 106, p. 104504, 2021.
  208. J. Xie, I. Alvarez-Fernandez, and W. Sun, “A review of machine learning applications in power system resilience,” in 2020 IEEE Power & Energy Society General Meeting (PESGM).   IEEE, 2020, pp. 1–5.
  209. H. K. Alfares, “Introduction to optimization models and techniques,” in Applied Optimization in the Petroleum Industry.   Springer, 2023, pp. 25–53.
  210. M. T. Emmerich and A. H. Deutz, “A tutorial on multiobjective optimization: fundamentals and evolutionary methods,” Natural computing, vol. 17, pp. 585–609, 2018.
  211. G. Venter, “Review of optimization techniques,” 2010.
  212. B. F. Hobbs, “Optimization methods for electric utility resource planning,” European Journal of Operational Research, vol. 83, no. 1, pp. 1–20, 1995.
  213. M.-O. Metais, O. Jouini, Y. Perez, J. Berrada, and E. Suomalainen, “Too much or not enough? planning electric vehicle charging infrastructure: A review of modeling options,” Renewable and Sustainable Energy Reviews, vol. 153, p. 111719, 2022.
  214. M. Ashfaq, O. Butt, J. Selvaraj, and N. Rahim, “Assessment of electric vehicle charging infrastructure and its impact on the electric grid: A review,” International Journal of Green Energy, vol. 18, no. 7, pp. 657–686, 2021.
  215. E. Veldman and R. A. Verzijlbergh, “Distribution grid impacts of smart electric vehicle charging from different perspectives,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 333–342, 2015.
  216. A. Dubey and S. Santoso, “Electric vehicle charging on residential distribution systems: Impacts and mitigations,” IEEE Access, vol. 3, pp. 1871–1893, 2015.
  217. Y. Wang, H. Su, W. Wang, and Y. Zhu, “The impact of electric vehicle charging on grid reliability,” in IOP Conference Series: Earth and Environmental Science, vol. 199, no. 5.   IOP Publishing, 2018, p. 052033.
  218. S. Rahman, I. A. Khan, A. A. Khan, A. Mallik, and M. F. Nadeem, “Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system,” Renewable and Sustainable Energy Reviews, vol. 153, p. 111756, 2022.
  219. R. B. Bass and N. Zimmerman, “Impacts of electric vehicle charging on electric power distribution systems,” 2013.
  220. H. Nazaripouya, Y.-W. Chung, and A. Akhil, “Nergy storage in microgrids: Challenges, applications and research need,” International Journal of Energy and Smart Grid, vol. 3, no. 2, pp. 60–70, 2019.
  221. S. Choudhury, “Review of energy storage system technologies integration to microgrid: Types, control strategies, issues, and future prospects,” Journal of Energy Storage, vol. 48, p. 103966, 2022.
  222. M. H. Bellido, L. P. Rosa, A. O. Pereira, D. M. Falcao, and S. K. Ribeiro, “Barriers, challenges and opportunities for microgrid implementation: The case of federal university of rio de janeiro,” Journal of cleaner production, vol. 188, pp. 203–216, 2018.
  223. A. Sanghvi and T. Markel, “Cybersecurity for electric vehicle fast-charging infrastructure,” in 2021 IEEE Transportation Electrification Conference & Expo (ITEC), 2021, pp. 573–576.
  224. B. Canaan, B. Colicchio, and D. Ould Abdeslam, “Microgrid cyber-security: Review and challenges toward resilience,” Applied Sciences, vol. 10, no. 16, p. 5649, 2020.
  225. A. Novak and A. Ivanov, “Network security vulnerabilities in smart vehicle-to-grid systems identifying threats and proposing robust countermeasures,” Journal of Artificial Intelligence and Machine Learning in Management, vol. 7, no. 1, pp. 48–80, 2023.
  226. F. Nejabatkhah, Y. W. Li, H. Liang, and R. Reza Ahrabi, “Cyber-security of smart microgrids: A survey,” Energies, vol. 14, no. 1, p. 27, 2020.
  227. K. H. Mohd Azmi, N. A. Mohamed Radzi, N. A. Azhar, F. S. Samidi, I. Thaqifah Zulkifli, and A. M. Zainal, “Active electric distribution network: Applications, challenges, and opportunities,” IEEE Access, vol. 10, pp. 134 655–134 689, 2022.
  228. N. Moghadasi, Z. A. Collier, A. Koch, D. L. Slutzky, T. L. Polmateer, M. C. Manasco, and J. H. Lambert, “Trust and security of electric vehicle-to-grid systems and hardware supply chains,” Reliability Engineering & System Safety, vol. 225, p. 108565, 2022.
  229. D. Upadhyay and S. Sampalli, “Scada (supervisory control and data acquisition) systems: Vulnerability assessment and security recommendations,” Computers & Security, vol. 89, p. 101666, 2020.
  230. L. Xuefeng and Z. Wei, “Risks of cyber threats and developing robust security protocols within electric vehicle charging infrastructure,” Journal of Sustainable Urban Futures, vol. 12, no. 12, pp. 16–31, 2022.
  231. T. Li, B. Chen, L. Yu, and W.-A. Zhang, “Active security control approach against dos attacks in cyber-physical systems,” IEEE Transactions on Automatic Control, vol. 66, no. 9, pp. 4303–4310, 2021.
  232. C. Catal, A. Ozcan, E. Donmez, and A. Kasif, “Analysis of cyber security knowledge gaps based on cyber security body of knowledge,” Education and Information Technologies, vol. 28, no. 2, pp. 1809–1831, 2023.

Summary

We haven't generated a summary for this paper yet.