Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Based Superposition Coded Modulation for Hierarchical Semantic Communications over Broadcast Channels (2401.01564v2)

Published 3 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: We consider multi-user semantic communications over broadcast channels. While most existing works consider that each receiver requires either the same or independent semantic information, this paper explores the scenario where the semantic information desired by different receivers is different but correlated. In particular, we investigate semantic communications over Gaussian broadcast channels where the transmitter has a common observable source but the receivers wish to recover hierarchical semantic information in adaptation to their channel conditions. Inspired by the capacity achieving property of superposition codes, we propose a deep learning based superposition coded modulation (DeepSCM) scheme. Specifically, the hierarchical semantic information is first extracted and encoded into basic and enhanced feature vectors. A linear minimum mean square error (LMMSE) decorrelator is then developed to obtain a refinement from the enhanced features that is uncorrelated with the basic features. Finally, the basic features and their refinement are superposed for broadcasting after probabilistic modulation. Experiments are conducted for two-receiver image semantic broadcasting with coarse and fine classification as hierarchical semantic tasks. DeepSCM outperforms the benchmarking coded-modulation scheme without a superposition structure, especially with large channel disparity and high order modulation. It also approaches the performance upperbound as if there were only one receiver.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Y. Bo, S. Shao, and M. Tao, “A superposition code approach for digital semantic communications over broadcast channels,” in 2023 IEEE Globecom.   IEEE, 2023, pp. 1–6.
  2. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 5–41, 2023.
  3. Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, and K. Huang, “What is semantic communication? a view on conveying meaning in the era of machine intelligence,” Journal of Communications and Information Networks, vol. 6, no. 4, pp. 336–371, 2021.
  4. X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview, open issues, and future research directions,” IEEE Wireless Communications, vol. 29, no. 1, pp. 210–219, 2022.
  5. M. Sana and E. C. Strinati, “Learning semantics: An opportunity for effective 6g communications,” in 2022 IEEE 19th Annual Consumer Communications And Networking Conference (CCNC), 2022, pp. 631–636.
  6. Z. Weng and Z. Qin, “Semantic communication systems for speech transmission,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2434–2444, 2021.
  7. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
  8. Q. Zhou, R. Li, Z. Zhao, C. Peng, and H. Zhang, “Semantic communication with adaptive universal transformer,” IEEE Wireless Communications Letters, vol. 11, no. 3, pp. 453–457, 2022.
  9. H. Xie and Z. Qin, “A lite distributed semantic communication system for internet of things,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 142–153, 2021.
  10. J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 197–211, 2022.
  11. K. Liu, D. Liu, L. Li, N. Yan, and H. Li, “Semantics-to-signal scalable image compression with learned revertible representations,” International Journal of Computer Vision, vol. 129, no. 9, pp. 2605–2621, 2021.
  12. H. Zhang, S. Shao, M. Tao, X. Bi, and K. B. Letaief, “Deep learning-enabled semantic communication systems with task-unaware transmitter and dynamic data,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 170–185, 2023.
  13. E. Bourtsoulatze, D. Burth Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 567–579, 2019.
  14. S. Wang, J. Dai, Z. Liang, K. Niu, Z. Si, C. Dong, X. Qin, and P. Zhang, “Wireless deep video semantic transmission,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 214–229, 2023.
  15. P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, “Wireless semantic communications for video conferencing,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 230–244, 2023.
  16. H. Xie, Z. Qin, and G. Y. Li, “Task-oriented multi-user semantic communications for vqa,” IEEE Wireless Communications Letters, vol. 11, no. 3, pp. 553–557, 2022.
  17. D. Huang, F. Gao, X. Tao, Q. Du, and J. Lu, “Toward semantic communications: Deep learning-based image semantic coding,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 55–71, 2023.
  18. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
  19. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, vol. 30, 2017, pp. 5998–6008.
  20. Q. Fu, H. Xie, Z. Qin, G. Slabaugh, and X. Tao, “Vector quantized semantic communication system,” IEEE Wireless Communications Letters, vol. 12, no. 6, pp. 982–986, 2023.
  21. S. Xie, S. Ma, M. Ding, Y. Shi, M. Tang, and Y. Wu, “Robust information bottleneck for task-oriented communication with digital modulation,” IEEE Journal on Selected Areas in Communications, 2023.
  22. T.-Y. Tung, D. B. Kurka, M. Jankowski, and D. Gündüz, “Deepjscc-q: Constellation constrained deep joint source-channel coding,” IEEE Journal on Selected Areas in Information Theory, vol. 3, no. 4, pp. 720–731, 2022.
  23. Y. Bo, Y. Duan, S. Shao, and M. Tao, “Learning based joint coding-modulation for digital semantic communication systems,” in 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), 2022, pp. 1–6.
  24. ——, “Joint coding-modulation for digital semantic communications via variational autoencoder,” arXiv preprint arXiv:2310.06690, 2023.
  25. S. Wang, K. Yang, J. Dai, and K. Niu, “Distributed image transmission using deep joint source-channel coding,” in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 5208–5212.
  26. S. F. Yilmaz, C. Karamanlı, and D. Gündüz, “Distributed deep joint source-channel coding over a multiple access channel,” in ICC 2023-IEEE International Conference on Communications.   IEEE, 2023, pp. 1400–1405.
  27. L. Lin, W. Xu, F. Wang, Y. Zhang, W. Zhang, and P. Zhang, “Channel-transferable semantic communications for multi-user ofdm-noma systems,” IEEE Wireless Communications Letters, 2023.
  28. Y. Zhang, W. Xu, H. Gao, and F. Wang, “Multi-user semantic communications for cooperative object identification,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), 2022, pp. 157–162.
  29. H. Xie, Z. Qin, X. Tao, and K. B. Letaief, “Task-oriented multi-user semantic communications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 9, pp. 2584–2597, 2022.
  30. P. Zhang, X. Xu, C. Dong, K. Niu, H. Liang, Z. Liang, X. Qin, M. Sun, H. Chen, N. Ma et al., “Model division multiple access for semantic communications,” Frontiers of Information Technology & Electronic Engineering, pp. 1–12, 2023.
  31. S. Ma, W. Qiao, Y. Wu, H. Li, G. Shi, D. Gao, Y. Shi, S. Li, and N. Al-Dhahir, “Features disentangled semantic broadcast communication networks,” arXiv preprint arXiv:2303.01892, 2023.
  32. T. Wu, Z. Chen, M. Tao, B. Xia, and W. Zhang, “Fusion-based multi-user semantic communications for wireless image transmission over degraded broadcast channels,” arXiv preprint arXiv:2305.09165, 2023.
  33. W. Li, H. Liang, C. Dong, X. Xu, P. Zhang, and K. Liu, “Non-orthogonal multiple access enhanced multi-user semantic communication,” arXiv preprint arXiv:2303.06597, 2023.
  34. H. Hu, X. Zhu, F. Zhou, W. Wu, R. Q. Hu, and H. Zhu, “One-to-many semantic communication systems: Design, implementation, performance evaluation,” IEEE Communications Letters, vol. 26, no. 12, pp. 2959–2963, 2022.
  35. Z. Lu, R. Li, M. Lei, C. Wang, Z. Zhao, and H. Zhang, “Self-critical alternate learning based semantic broadcast communication,” arXiv preprint arXiv:2312.01423, 2023.
  36. T. Cover, “Broadcast channels,” IEEE Transactions on Information Theory, vol. 18, no. 1, pp. 2–14, 1972.
  37. E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” arXiv:1611.01144, 2016.
  38. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” University of Toronto, Technical Report, 2009.
  39. H. M. D. Kabir, M. Abdar, A. Khosravi, S. M. J. Jalali, A. F. Atiya, S. Nahavandi, and D. Srinivasan, “Spinalnet: Deep neural network with gradual input,” IEEE Transactions on Artificial Intelligence, pp. 1–13, 2022.

Summary

We haven't generated a summary for this paper yet.