Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Age-Aware Dynamic Frame Slotted ALOHA for Machine-Type Communications (2401.01424v1)

Published 2 Jan 2024 in cs.NI, cs.SY, and eess.SY

Abstract: Information aging has gained prominence in characterizing communication protocols for timely remote estimation and control applications. This work proposes an Age of Information (AoI)-aware threshold-based dynamic frame slotted ALOHA (T-DFSA) for contention resolution in random access machine-type communication networks. Unlike conventional DFSA that maximizes the throughput in each frame, the frame length and age-gain threshold in T-DFSA are determined to minimize the normalized average AoI reduction of the network in each frame. At the start of each frame in the proposed protocol, the common Access Point (AP) stores an estimate of the age-gain distribution of a typical node. Depending on the observed status of the slots, age-gains of successful nodes, and maximum available AoI, the AP adjusts its estimation in each frame. The maximum available AoI is exploited to derive the maximum possible age-gain at each frame and thus, to avoid overestimating the age-gain threshold, which may render T-DFSA unstable. Numerical results validate our theoretical analysis and demonstrate the effectiveness of the proposed T-DFSA compared to the existing optimal frame slotted ALOHA, threshold-ALOHA, and age-based thinning protocols in a considerable range of update generation rates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and L. Ladid, “Internet of Things in the 5G era: Enablers, architecture, and business models,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 510–527, Mar. 2016.
  2. M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age of information in the Internet of Things,” IEEE Commun. Mag., vol. 57, no. 12, pp. 72–77, Dec. 2019.
  3. F. Chiariotti, O. Vikhrova, B. Soret, and P. Popovski, “Age of information in multihop connections with tributary traffic and no preemption,” IEEE Trans. Commun., vol. 70, no. 10, pp. 6718–6733, Oct. 2022.
  4. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Mar. 2012, pp. 2731–2735.
  5. M. S. Kumar, A. Dadlani, M. Moradian, A. Khonsari, and T. A. Tsiftsis, “On the age of status updates in unreliable multi-source M/G/1 queueing systems,” IEEE Commun. Lett., vol. 27, no. 2, pp. 751–755, Feb. 2023.
  6. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE J. Sel. Areas Commun., vol. 39, no. 5, pp. 1183–1210, May 2021.
  7. F. Ghavimi and H.-H. Chen, “M2M communications in 3GPP LTE/LTE-A networks: Architectures, service requirements, challenges, and applications,” IEEE Commun. Surveys & Tutor., vol. 17, no. 2, pp. 525–549, 2015.
  8. D. C. Atabay, E. Uysal, and O. Kaya, “Improving age of information in random access channels,” in Proc. IEEE Int. Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Jul. 2020, pp. 912–917.
  9. O. T. Yavascan and E. Uysal, “Analysis of slotted ALOHA with an age threshold,” IEEE J. Sel. Areas Commun., vol. 39, no. 5, pp. 1456–1470, May 2021.
  10. X. Chen, K. Gatsis, H. Hassani, and S. S. Bidokhti, “Age of information in random access channels,” IEEE Trans. Inf. Theory, vol. 68, no. 10, pp. 6548–6568, Oct. 2022.
  11. M. Ahmetoglu, O. T. Yavascan, and E. Uysal, “MiSTA: An age-optimized slotted ALOHA protocol,” IEEE Internet Things J., vol. 9, no. 17, pp. 15 484–15 496, Sep. 2022.
  12. A. Rajandekar and B. Sikdar, “A survey of MAC layer issues and protocols for machine-to-machine communications,” IEEE Internet Things J., vol. 2, no. 2, pp. 175–186, 2015.
  13. J. Yu, P. Zhang, L. Chen, J. Liu, R. Zhang, K. Wang, and J. An, “Stabilizing frame slotted ALOHA-based IoT systems: A geometric ergodicity perspective,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 714–725, Mar. 2021.
  14. J. Wang, J. Yu, X. Chen, L. Chen, C. Qiu, and J. An, “Age of information for frame slotted ALOHA,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2121–2135, Apr. 2023.
  15. Z. Yue, H. H. Yang, M. Zhang, and N. Pappas, “Age of information under frame slotted ALOHA-based status updating protocol,” IEEE J. Sel. Areas Commun., vol. 41, no. 7, pp. 2071–2089, Jul. 2023.
  16. W.-C. Huang, Y.-C. Huang, K.-Y. Lin, S.-L. Shieh, and P.-N. Chen, “Distributed scheduling for status update with heterogeneous services under the IRSA protocol,” IEEE Trans. Veh. Technol., 2023.
  17. S. Saha, V. B. Sukumaran, and C. R. Murthy, “On the minimum average age of information in IRSA for grant-free mMTC,” IEEE J. Sel. Areas Commun., vol. 39, no. 5, pp. 1441–1455, May 2021.
  18. A. Munari, “Modern random access: An age of information perspective on irregular repetition slotted ALOHA,” IEEE Trans. Commun., vol. 69, no. 6, pp. 3572–3585, Jun. 2021.
  19. Y. Huang, J. Jiao, S. Wu, R. Lu, and Q. Zhang, “Graph-based spatially coupled IRSA random access for age-critical grant-free massive access,” in Proc. IEEE Int. Conf. .Commun. (ICC), May 2022, pp. 1986–1991.
  20. Y. Li and K.-W. Chin, “Energy-aware irregular slotted ALOHA methods for wireless-powered IoT networks,” IEEE Internet Things J., vol. 9, no. 14, pp. 11 784–11 795, Jul. 2022.
  21. C. Stefanovic, P. Popovski, and D. Vukobratovic, “Frameless ALOHA protocol for wireless networks,” IEEE Commun. Lett., vol. 16, no. 12, pp. 2087–2090, 2012.
  22. Y. Huang, J. Jiao, Y. Wang, X. Zhang, S. Wu, R. Lu, and Q. Zhang, “Age of information minimization for frameless ALOHA in grant-free massive access,” IEEE Trans. Wirel. Commun., 2023.
  23. A. Munari, F. Lázaro, G. Durisi, and G. Liva, “The dynamic behavior of frameless ALOHA: Drift analysis, throughput, and age of information,” IEEE Trans. Commun., 2023.
  24. F. Schoute, “Dynamic frame length ALOHA,” IEEE Trans. Commun., vol. 31, no. 4, pp. 565–568, Apr. 1983.
  25. J. Su, Z. Sheng, V. C. M. Leung, and Y. Chen, “Energy efficient tag identification algorithms for RFID: Survey, motivation and new design,” IEEE Wireless Commun., vol. 26, no. 3, pp. 118–124, Jun. 2019.
  26. Y. H. Bae and J. W. Baek, “Age of information and throughput in random access-based IoT systems with periodic updating,” IEEE Wirel. Commun. Lett., vol. 11, no. 4, pp. 821–825, Apr. 2022.
  27. I. Kadota and E. Modiano, “Age of information in random access networks with stochastic arrivals,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2021, pp. 1–10.
  28. R. D. Yates and S. K. Kaul, “Status updates over unreliable multiaccess channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), June 2017, pp. 331–335.
  29. A. Munari and G. Liva, “Information freshness analysis of slotted ALOHA in Gilbert-Elliot channels,” IEEE Commun. Lett., vol. 25, no. 9, pp. 2869–2873, Sep. 2021.
  30. H. Pan, T.-T. Chan, J. Li, and V. C. M. Leung, “Age of information with collision-resolution random access,” IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 11 295–11 300, Oct. 2022.
  31. Q. Wang and H. Chen, “Age of information in reservation multi-access networks with stochastic arrivals,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Aug. 2022, p. 2088–2093.
  32. T. Yang, J. Jiao, S. Wu, R. Lu, and Q. Zhang, “Grant free age-optimal random access protocol for satellite-based Internet of Things,” IEEE Trans. Commun., vol. 70, no. 6, pp. 3947–3961, Jun. 2022.
  33. H. Vogt, “Efficient object identification with passive RFID tags,” in Lecture Notes in Computer Science.   Springer Berlin Heidelberg, 2002, vol. 2414, pp. 98–113.
  34. W.-T. Chen, “An accurate tag estimate method for improving the performance of an RFID anticollision algorithm based on dynamic frame length ALOHA,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1, pp. 9–15, Jan. 2009.
  35. S.-R. Lee, S.-D. Joo, and C.-W. Lee, “An enhanced dynamic framed slotted ALOHA algorithm for RFID tag identification,” in Proc. IEEE International Conference on Mobile and Ubiquitous Systems: Networking and Services (MOBIQUITOUS), 2005, pp. 166–172.
Citations (9)

Summary

We haven't generated a summary for this paper yet.