Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition (2401.01388v1)

Published 1 Jan 2024 in cs.CV, cs.AI, and cs.LG

Abstract: WiFi Channel State Information (CSI)-based human activity recognition (HAR) enables contactless, long-range sensing in spatially constrained environments while preserving visual privacy. However, despite the presence of numerous WiFi-enabled devices around us, few expose CSI to users, resulting in a lack of sensing hardware options. Variants of the Espressif ESP32 have emerged as potential low-cost and easy-to-deploy solutions for WiFi CSI-based HAR. In this work, four ESP32-S3-based 2.4GHz directional antenna systems are evaluated for their ability to facilitate long-range through-wall HAR. Two promising systems are proposed, one of which combines the ESP32-S3 with a directional biquad antenna. This combination represents, to the best of our knowledge, the first demonstration of such a system in WiFi-based HAR. The second system relies on the built-in printed inverted-F antenna (PIFA) of the ESP32-S3 and achieves directionality through a plane reflector. In a comprehensive evaluation of line-of-sight (LOS) and non-line-of-sight (NLOS) HAR performance, both systems are deployed in an office environment spanning a distance of 18 meters across five rooms. In this experimental setup, the Wallhack1.8k dataset, comprising 1806 CSI amplitude spectrograms of human activities, is collected and made publicly available. Based on Wallhack1.8k, we train activity recognition models using the EfficientNetV2 architecture to assess system performance in LOS and NLOS scenarios. For the core NLOS activity recognition problem, the biquad antenna and PIFA-based systems achieve accuracies of 92.0$\pm$3.5 and 86.8$\pm$4.7, respectively, demonstrating the feasibility of long-range through-wall HAR with the proposed systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. H. Lee, C. R. Ahn, and N. Choi, “Toward single occupant activity recognition for long-term periods via channel state information,” IEEE Internet of Things Journal, pp. 1–1, 2023.
  2. J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang, “Wireless sensing for human activity: A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1629–1645, 2020.
  3. K. Arning and M. Ziefle, ““get that camera out of my house!” conjoint measurement of preferences for video-based healthcare monitoring systems in private and public places,” in Inclusive Smart Cities and e-Health, A. Geissbühler, J. Demongeot, M. Mokhtari, B. Abdulrazak, and H. Aloulou, Eds.   Cham: Springer International Publishing, 2015, pp. 152–164.
  4. F. Zafari, A. Gkelias, and K. Leung, “A survey of indoor localization systems and technologies,” IEEE Communications Surveys & Tutorials, vol. PP, 09 2017.
  5. M. Youssef, M. Mah, and A. Agrawala, “Challenges: device-free passive localization for wireless environments,” in Proceedings of the 13th annual ACM international conference on Mobile computing and networking, 2007, pp. 222–229.
  6. A. T. Parameswaran, M. I. Husain, S. Upadhyaya et al., “Is rssi a reliable parameter in sensor localization algorithms: An experimental study,” in Field failure data analysis workshop (F2DA09), vol. 5.   IEEE Niagara Falls, NY, USA, 2009.
  7. D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering 802.11n traces with channel state information,” ACM SIGCOMM CCR, vol. 41, no. 1, p. 53, Jan. 2011.
  8. Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity wifi,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’15.   New York, NY, USA: ACM, 2015, p. 53–64. [Online]. Available: http://doi.acm.org/10.1145/2789168.2790124
  9. F. Gringoli, M. Schulz, J. Link, and M. Hollick, “Free your csi: A channel state information extraction platform for modern wi-fi chipsets,” in Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, ser. WiNTECH ’19, 2019, p. 21–28. [Online]. Available: https://doi.org/10.1145/3349623.3355477
  10. M. Atif, S. Muralidharan, H. Ko, and B. Yoo, “Wi-ESP—A tool for CSI-based Device-Free Wi-Fi Sensing (DFWS),” Journal of Computational Design and Engineering, 05 2020, qwaa048. [Online]. Available: https://doi.org/10.1093/jcde/qwaa048
  11. Z. Hao, G. Wang, and X. Dang, “Car-sense: Vehicle occupant legacy hazard detection method based on dfws,” Applied Sciences, vol. 12, p. 11809, 11 2022.
  12. S. M. Hernandez and E. Bulut, “Adversarial occupancy monitoring using one-sided through-wall wifi sensing,” in ICC 2021 - IEEE International Conference on Communications, 2021, pp. 1–6.
  13. S. Ajit Kumar, K. Akhil, and S. K. Udgata, “Wi-fi signal-based through-wall sensing for human presence and fall detection using esp32 module,” in Intelligent Systems, S. K. Udgata, S. Sethi, and X.-Z. Gao, Eds.   Singapore: Springer Nature Singapore, 2022, pp. 459–470.
  14. Z. Wang, K. Jiang, Y. Hou, Z. Huang, W. Dou, C. Zhang, and Y. Guo, “A survey on csi-based human behavior recognition in through-the-wall scenario,” IEEE Access, vol. PP, pp. 1–1, 06 2019.
  15. M. Atif, S. Muralidharan, H. Ko, and B. Yoo, “Wi-ESP—A tool for CSI-based Device-Free Wi-Fi Sensing (DFWS),” Journal of Computational Design and Engineering, vol. 7, no. 5, pp. 644–656, 05 2020. [Online]. Available: https://doi.org/10.1093/jcde/qwaa048
  16. S. M. Hernandez and E. Bulut, “Performing wifi sensing with off-the-shelf smartphones,” in 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2020, pp. 1–3.
  17. O. Pradhan, K. Newman, and F. Barnes, “Parametric analysis of meandered inverted-f antenna and use of a high impedance surface based ground plane for wban applications,” in 2013 IEEE International Conference on Body Sensor Networks.   IEEE, 2013, pp. 1–7.
  18. B. Singh and A. Singh, “A novel biquad antenna for 2.4 ghz wireless link application: a proposed design,” International Journal of Electronics & Communication Technology, vol. 3, no. 1, pp. 174–176, 2012.
  19. R. Pearson, Y. Neuvo, J. Astola, and M. Gabbouj, “Generalized hampel filters,” EURASIP Journal on Advances in Signal Processing, vol. 2016, 08 2016.
  20. C. Chen, G. Zhou, and Y. Lin, “Cross-domain wifi sensing with channel state information: A survey,” ACM Comput. Surv., vol. 55, no. 11, feb 2023. [Online]. Available: https://doi.org/10.1145/3570325
  21. Q. Gao, J. Wang, X. Ma, F. Xueyan, and H. Wang, “Csi-based device-free wireless localization and activity recognition using radio image features,” IEEE Transactions on Vehicular Technology, vol. PP, pp. 1–1, 08 2017.
  22. M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in International conference on machine learning.   PMLR, 2021, pp. 10 096–10 106.

Summary

We haven't generated a summary for this paper yet.