Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IdentiFace : A VGG Based Multimodal Facial Biometric System (2401.01227v2)

Published 2 Jan 2024 in cs.CV and cs.AI

Abstract: The development of facial biometric systems has contributed greatly to the development of the computer vision field. Nowadays, there's always a need to develop a multimodal system that combines multiple biometric traits in an efficient, meaningful way. In this paper, we introduce "IdentiFace" which is a multimodal facial biometric system that combines the core of facial recognition with some of the most important soft biometric traits such as gender, face shape, and emotion. We also focused on developing the system using only VGG-16 inspired architecture with minor changes across different subsystems. This unification allows for simpler integration across modalities. It makes it easier to interpret the learned features between the tasks which gives a good indication about the decision-making process across the facial modalities and potential connection. For the recognition problem, we acquired a 99.2% test accuracy for five classes with high intra-class variations using data collected from the FERET database[1]. We achieved 99.4% on our dataset and 95.15% on the public dataset[2] in the gender recognition problem. We were also able to achieve a testing accuracy of 88.03% in the face-shape problem using the celebrity face-shape dataset[3]. Finally, we achieved a decent testing accuracy of 66.13% in the emotion task which is considered a very acceptable accuracy compared to related work on the FER2013 dataset[4].

Citations (1)

Summary

We haven't generated a summary for this paper yet.