Whole-examination AI estimation of fetal biometrics from 20-week ultrasound scans (2401.01201v1)
Abstract: The current approach to fetal anomaly screening is based on biometric measurements derived from individually selected ultrasound images. In this paper, we introduce a paradigm shift that attains human-level performance in biometric measurement by aggregating automatically extracted biometrics from every frame across an entire scan, with no need for operator intervention. We use a convolutional neural network to classify each frame of an ultrasound video recording. We then measure fetal biometrics in every frame where appropriate anatomy is visible. We use a Bayesian method to estimate the true value of each biometric from a large number of measurements and probabilistically reject outliers. We performed a retrospective experiment on 1457 recordings (comprising 48 million frames) of 20-week ultrasound scans, estimated fetal biometrics in those scans and compared our estimates to the measurements sonographers took during the scan. Our method achieves human-level performance in estimating fetal biometrics and estimates well-calibrated credible intervals in which the true biometric value is expected to lie.
- L. J. Salomon, Z. Alfirevic, F. D. S. Costa, R. L. Deter, F. Figueras, T. Ghi, P. Glanc, A. Khalil, W. Lee, R. Napolitano, A. Papageorghiou, A. Sotiradis, J. Stirnemann, A. Toi, and G. Yeo, “Isuog practice guidelines: ultrasound assessment of fetal biometry and growth,” Ultrasound in Obstetrics and Gynecology, vol. 53, pp. 715–723, 6 2019.
- N. H. S. England, “Fetal anomaly screening programme handbook,” 2021.
- L. J. Salomon, Z. Alfirevic, V. Berghella, C. M. Bilardo, G. E. Chalouhi, F. D. S. Costa, E. Hernandez-Andrade, G. Malinger, H. Munoz, D. Paladini, F. Prefumo, A. Sotiriadis, A. Toi, and W. Lee, “Isuog practice guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan,” Ultrasound in Obstetrics and Gynecology, vol. 59, pp. 840–856, 6 2022.
- L. Drukker, R. Droste, P. Chatelain, J. A. Noble, and A. T. Papageorghiou, “Expected-value bias in routine third-trimester growth scans,” Ultrasound in Obstetrics and Gynecology, vol. 55, pp. 375–382, 3 2020.
- I. Sarris, C. Ioannou, P. Chamberlain, E. Ohuma, F. Roseman, L. Hoch, D. G. Altman, and A. T. Papageorghiou, “Intra- and interobserver variability in fetal ultrasound measurements,” Ultrasound in Obstetrics and Gynecology, vol. 39, pp. 266–273, 2012.
- C. F. Baumgartner, K. Kamnitsas, J. Matthew, T. P. Fletcher, S. Smith, L. M. Koch, B. Kainz, and D. Rueckert, “Sononet: Real-time detection and localisation of fetal standard scan planes in freehand ultrasound,” IEEE Transactions on Medical Imaging, vol. 36, 2017.
- H. Chen, Q. Dou, D. Ni, J. Z. Cheng, J. Qin, S. Li, and P. A. Heng, “Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9349, pp. 507–514, 2015.
- X. P. Burgos-Artizzu, D. Coronado-Gutierrez, B. Valenzuela-Alcaraz, E. Bonet-Carne, E. Eixarch, F. Crispi, and E. Gratacos, “Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes,” Scientific Reports 2020 10:1, vol. 10, pp. 1–12, 6 2020.
- M. Sinclair, C. F. Baumgartner, J. Matthew, W. Bai, J. C. Martinez, Y. Li, S. Smith, C. L. Knight, B. Kainz, J. Hajnal, A. P. King, and D. Rueckert, “Human-level performance on automatic head biometrics in fetal ultrasound using fully convolutional neural networks,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2018-July, pp. 714–717, 10 2018.
- M. Yaqub, N. Sleep, S. Syme, Z. Chen, H. Ryou, S. Walton, J. A. Noble, and A. T. Papageorghiou, “491 scannav ® audit: an ai-powered screening assistant for fetal anatomical ultrasound,” American Journal of Obstetrics and Gynecology, vol. 224, p. S312, 2 2021.
- S. Plotka, T. Wlodarczyk, A. Klasa, M. Lipa, A. Sitek, and T. Trzcinski, “Fetalnet: Multi-task deep learning framework for fetal ultrasound biometric measurements,” Communications in Computer and Information Science, vol. 1517 CCIS, pp. 257–265, 2021.
- C. Lee, A. Willis, C. Chen, M. Sieniek, A. Watters, B. Stetson, A. Uddin, J. Wong, R. Pilgrim, K. Chou, D. Tse, S. Shetty, and R. G. Gomes, “Development of a machine learning model for sonographic assessment of gestational age,” JAMA Network Open, vol. 6, pp. e2248685–e2248685, 1 2023.
- J. Matthew, E. Skelton, T. G. Day, V. A. Zimmer, A. Gomez, G. Wheeler, N. Toussaint, T. Liu, S. Budd, K. Lloyd, R. Wright, S. Deng, N. Ghavami, M. Sinclair, Q. Meng, B. Kainz, J. A. Schnabel, D. Rueckert, R. Razavi, J. Simpson, and J. Hajnal, “Exploring a new paradigm for the fetal anomaly ultrasound scan: Artificial intelligence in real time,” Prenatal Diagnosis, vol. 42, pp. 49–59, 1 2022.
- R. Smith, “An overview of the tesseract ocr engine,” Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, vol. 2, pp. 629–633, 2007.
- Voluson E8/E8 Expert Basic User Manual. GE Healthcare, 2012.
- B. 3rd Trimester Special Interest Group, “Professional guidance for fetal growth scans performed after 23 weeks of gestation,” 2022.
- M. R. Chavez, C. V. Ananth, J. C. Smulian, S. Lashley, E. V. Kontopoulos, and A. M. Vintzileos, “Fetal transcerebellar diameter nomogram in singleton gestations with special emphasis in the third trimester: A comparison with previously published nomograms,” American Journal of Obstetrics and Gynecology, vol. 189, pp. 1021–1025, 10 2003.
- “Labelbox | data-centric ai platform for building intelligent applications.”
- S. Constantine, A. Kiermeier, and P. Anderson, “The normal fetal cephalic index in the second and third trimesters of pregnancy,” Ultrasound Quarterly, vol. 36, pp. 255–262, 2020.