2000 character limit reached
Three term rational function progressions in finite fields (2401.01137v1)
Published 2 Jan 2024 in math.NT, math.AG, math.CA, and math.CO
Abstract: Let $F(t),G(t)\in \mathbb{Q}(t)$ be rational functions such that $F(t),G(t)$ and the constant function $1$ are linearly independent over $\mathbb{Q}$, we prove an asymptotic formula for the number of the three term rational function progressions of the form $x,x+F(y),x+G(y)$ in subsets of $\mathbb{F}_p$. The main new ingredient is an algebraic geometry version of PET induction that bypasses Weyl's differencing. This answers a question of Bourgain and Chang.