Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wireless 6G Connectivity for Massive Number of Devices and Critical Services (2401.01127v5)

Published 2 Jan 2024 in cs.IT and math.IT

Abstract: Compared to the generations up to 4G, whose main focus was on broadband and coverage aspects, 5G has expanded the scope of wireless cellular systems towards embracing two new types of connectivity: massive machine-type communication (mMTC) and ultra-reliable low-latency communications (URLLC). This paper discusses the possible evolution of these two types of connectivity within the umbrella of 6G wireless systems. The paper consists of three parts. The first part deals with the connectivity for a massive number of devices. While mMTC research in 5G predominantly focuses on the problem of uncoordinated access in the uplink for a large number of devices, the traffic patterns in 6G may become more symmetric, leading to closed-loop massive connectivity. One of the drivers for this is distributed learning/inference. The second part of the paper discusses the evolution of wireless connectivity for critical services. While latency and reliability are tightly coupled in 5G, 6G will support a variety of safety critical control applications with different types of timing requirements, as evidenced by the emergence of metrics related to information freshness and information value. Additionally, ensuring ultra-high reliability for safety critical control applications requires modeling and estimation of the tail statistics of the wireless channel, queue length, and delay. The fulfiLLMent of these stringent requirements calls for the development of novel AI-based techniques, incorporating optimization theory, explainable AI, generative AI and digital twins. The third part analyzes the coexistence of massive connectivity and critical services. We will consider scenarios in which a massive number of devices need to support traffic patterns of mixed criticality. This is followed by a discussion about the management of wireless resources shared by services with different criticality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (96)
  1. ITU-R, “IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU-R M.2083-0, Sep. 2015.
  2. P. Popovski et al., “A perspective on time toward wireless 6G,” Proc. IEEE, vol. 110, no. 8, pp. 1116–1146, 2022.
  3. M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6G era: Challenges and opportunities,” IEEE Network, vol. 35, no. 2, pp. 244–251, 2020.
  4. I. Leyva-Mayorga et al., “LEO small-satellite constellations for 5G and beyond-5G communications,” IEEE Access, vol. 8, pp. 184 955–184 964, 2020.
  5. ITU-R, “IMT vision-framework and overall objectives of the future development of IMT for 2030 and beyond,” Recommendation ITU-R M.[IMT.VISION 2030 AND Beyond], Sep. 2023.
  6. P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view,” IEEE Access, vol. 6, no. 1, Dec. 2018.
  7. 3rd Generation Partnership Project, “Study on scenarios and requirements for next generation access technologies,” 3GPP, Tech. Rep. 38.913, V17.0.0, 2022.
  8. G. Wikström et al., “6G—connecting a cyber-physical world,” Ericsson White Paper, Feb. 2022.
  9. D. Gündüz, F. Chiariotti, K. Huang, A. E. Kalør, S. Kobus, and P. Popovski, “Timely and massive communication in 6G: Pragmatics, learning, and inference,” IEEE BITS Inf. Theory Mag., 2023, early access.
  10. Z. Chen, F. Sohrabi, and W. Yu, “Sparse activity detection for massive connectivity,” IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1890–1904, 2018.
  11. L. Liu and W. Yu, “Massive connectivity with massive MIMO—Part I: Device activity detection and channel estimation,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2933–2946, 2018.
  12. K. Senel and E. G. Larsson, “Device activity and embedded information bit detection using AMP in massive MIMO,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Singapore, 2017, pp. 1–6.
  13. E. Paolini, G. Liva, and M. Chiani, “Coded slotted ALOHA: A graph-based method for uncoordinated multiple access,” IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6815–6832, 2015.
  14. L. Liu and W. Yu, “Massive connectivity with massive MIMO—Part II: Achievable rate characterization,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2947–2959, 2018.
  15. J. H. Sørensen, E. de Carvalho, Č. Stefanović, and P. Popovski, “Coded pilot random access for massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8035–8046, 2018.
  16. Y. Polyanskiy, “A perspective on massive random-access,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, 2017, pp. 2523–2527.
  17. V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan, “A coded compressed sensing scheme for unsourced multiple access,” IEEE Trans. Inf. Theory, vol. 66, no. 10, pp. 6509–6533, 2020.
  18. A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire, “Non-Bayesian activity detection, large-scale fading coefficient estimation, and unsourced random access with a massive MIMO receiver,” IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2925–2951, 2021.
  19. A. Decurninge, I. Land, and M. Guillaud, “Tensor-based modulation for unsourced massive random access,” IEEE Wireless Commun. Letters, vol. 10, no. 3, pp. 552–556, 2021.
  20. J. Kang and W. Yu, “Scheduling versus contention for massive random access in massive MIMO systems,” IEEE Trans. Commun, vol. 70, no. 9, pp. 5811–5824, 2022.
  21. D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106, no. 45, pp. 18 914–18 919, 2009.
  22. Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, “Phase transition analysis for covariance-based massive random access with massive MIMO,” IEEE Trans. Inf. Theory, vol. 68, no. 3, pp. 1696–1715, 2022.
  23. Z. Chen, F. Sohrabi, and W. Yu, “Multi-cell sparse activity detection for massive random access: Massive MIMO versus cooperative MIMO,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4060–4074, 2019.
  24. ——, “Sparse activity detection in multi-cell massive MIMO exploiting channel large-scale fading,” IEEE Trans. Signal Process., vol. 69, pp. 3768–3781, 2021.
  25. B. Çakmak, E. Gkiouzepi, M. Opper, and G. Caire, “Inference in linear observations with multiple signal sources: Analysis of approximate message passing and applications to unsourced random access in cell-free systems,” arXiv:2304.12290, 2023.
  26. Z. Wang, Y.-F. Liu, Z. Wang, and W. Yu, “Covariance-based activity detection in cooperative multi-cell massive MIMO: Scaling law and efficient algorithms,” arXiv:2311.15299, 2023.
  27. A. E. Kalør, R. Kotaba, and P. Popovski, “Common message acknowledgments: Massive ARQ protocols for wireless access,” IEEE Trans. Commun., vol. 70, no. 8, pp. 5258–5270, 2022.
  28. R. Song, K. M. Attiah, and W. Yu, “Coded downlink massive random access,” in Proc. IEEE Int Symp. Inf. Teory (ISIT), Taipei, Taiwan, 2023, pp. 2015–2020.
  29. J. Kang and W. Yu, “Minimum feedback for collision-free scheduling in massive random access,” IEEE Trans. Inf. Theory, vol. 67, no. 12, pp. 8094–8108, 2021.
  30. A. Lancho, G. Durisi, and L. Sanguinetti, “Cell-free massive MIMO for URLLC: A finite-blocklength analysis,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8723–8735, 2023.
  31. J. Zeng, T. Wu, Y. Song, Y. Zhong, T. Lv, and S. Zhou, “Achieving energy-efficient massive URLLC over cell-free massive MIMO,” IEEE Internet Things J., 2023, early access.
  32. J. Fu, P. Zhu, J. Li, Y. Wang, and X. You, “Beamforming design in short-packet transmission for URLLC in cell-free massive MIMO system,” IEEE Syst. J., vol. 17, no. 3, pp. 4715–4724, 2023.
  33. M. Elwekeil, A. Zappone, and S. Buzzi, “Power control in cell-free massive MIMO networks for UAVs URLLC under the finite blocklength regime,” IEEE Trans. Commun., vol. 71, no. 2, pp. 1126–1140, 2023.
  34. S. R. Khosravirad, H. Viswanathan, and W. Yu, “Exploiting diversity for ultra-reliable and low-latency wireless control,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 316–331, 2021.
  35. R. Hashemi, S. Ali, N. H. Mahmood, and M. Latva-aho, “Average rate and error probability analysis in short packet communications over RIS-aided URLLC systems,” IEEE Trans. Vec. Tech., vol. 70, no. 10, pp. 10 320–10 334, 2021.
  36. H. Ren, K. Wang, and C. Pan, “Intelligent reflecting surface-aided URLLC in a factory automation scenario,” IEEE Trans. Commun., vol. 70, no. 1, pp. 707–723, 2022.
  37. R. Hashemi, S. Ali, N. H. Mahmood, and M. Latva-Aho, “Joint sum rate and blocklength optimization in RIS-aided short packet URLLC systems,” IEEE Commun. Lett., vol. 26, no. 8, pp. 1838–1842, 2022.
  38. C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, and P. Popovski, “Can terahertz provide high-rate reliable low-latency communications for wireless VR?” IEEE Internet Things J., vol. 9, no. 12, pp. 9712–9729, 2022.
  39. D. Carnevale, A. R. Teel, and D. Nesic, “A lyapunov proof of an improved maximum allowable transfer interval for networked control systems,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 892–897, 2007.
  40. W. P. M. H. Heemels, A. R. Teel, N. van de Wouw, and D. Nešić, “Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance,” IEEE Trans. Autom. Control, vol. 55, no. 8, pp. 1781–1796, 2010.
  41. G. Karagiannis et al., “Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions,” IEEE Commun. Surv. Tutorials, vol. 13, no. 4, pp. 584–616, 2011.
  42. Y. Sadi, S. Coleri Ergen, and P. Park, “Minimum energy data transmission for wireless networked control systems,” IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 2163–2175, 2014.
  43. Y. Sadi and S. C. Ergen, “Joint optimization of wireless network energy consumption and control system performance in wireless networked control systems,” IEEE Trans. Wireless Commun., vol. 16, no. 4, pp. 2235–2248, 2017.
  44. H. Q. Ali, A. B. Darabi, and S. Coleri, “Optimization theory based deep reinforcement learning for resource allocation in ultra-reliable wireless networked control systems,” arXiv:2311.16895, 2023.
  45. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE J. Sel. Areas Commun., vol. 39, no. 5, pp. 1183–1210, 2021.
  46. Z. Zhao, W. Liu, D. E. Quevedo, Y. Li, and B. Vucetic, “Deep learning for wireless networked systems: A joint estimation-control-scheduling approach,” IEEE Internet Things J., 2023, early access.
  47. F. Nadeem, Y. Li, B. Vucetic, and M. Shirvanimoghaddam, “HARQ optimization for real-time remote estimation in wireless networked control,” arXiv:2201.05838, 2023.
  48. J. Chen, W. Liu, D. E. Quevedo, S. R. Khosravirad, Y. Li, and B. Vucetic, “Structure-enhanced DRL for optimal transmission scheduling,” IEEE Trans. Wireless Commun., 2023, early access.
  49. P. M. de Sant Ana, N. Marchenko, P. Popovski, and B. Soret, “Age of loop for wireless networked control systems optimization,” in Proc. IEEE Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), 2021, pp. 1–7.
  50. J. Cao, X. Zhu, S. Sun, P. Popovski, S. Feng, and Y. Jiang, “Age of loop for wireless networked control system in the finite blocklength regime: Average, variance and outage probability,” IEEE Trans. Wireless Commun., vol. 22, no. 8, pp. 5306–5320, 2023.
  51. T. Soleymani, J. S. Baras, and S. Hirche, “Value of information in feedback control: Quantification,” IEEE Trans. Autom. Control, vol. 67, no. 7, pp. 3730–3737, 2022.
  52. S. Wang, Q. Liu, P. U. Abara, J. S. Baras, and S. Hirche, “Value of information in networked control systems subject to delay,” in Proc. IEEE Conf. Decis. Control (CDC), Austin, Texas, USA, 2021, pp. 1275–1280.
  53. T. Farjam and T. Charalambous, “Effect of computational power of sensors on event-triggered control mechanisms over a shared contention-based networks,” arXiv:2104.03076, 2021.
  54. G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency wireless communication with short packets,” Proc. IEEE, vol. 104, no. 9, pp. 1711–1726, 2016.
  55. Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
  56. W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Quasi-static multiple-antenna fading channels at finite blocklength,” IEEE Trans. Info. Theory, vol. 60, no. 7, pp. 4232–4265, Jul. 2014.
  57. J. Östman, A. Lancho, G. Durisi, and L. Sanguinetti, “URLLC with massive MIMO: Analysis and design at finite blocklength,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6387–6401, 2021.
  58. T. Li, H. Zhang, J. Qiao, and J. Tian, “Robust beamforming design with finite blocklength for URLLC,” IEEE Trans. Veh. Tech., vol. 72, no. 2, pp. 2604–2608, 2023.
  59. W. Huang, S. Xiao, L. Wu, C. Kai, S. He, and C. Li, “Achievable rate region for uRLLC interference channel with finite blocklength transmission,” IEEE Trans. Veh. Tech., vol. 72, no. 7, pp. 8857–8868, 2023.
  60. A. Lancho, J. Östman, G. Durisi, T. Koch, and G. Vazquez-Vilar, “Saddlepoint approximations for short-packet wireless communications,” IEEE Trans. Wireless Comm., vol. 19, no. 7, Jul. 2020.
  61. A. Lancho, G. Durisi, and L. Sanguinetti, “Cell-free massive MIMO for URLLC: A finite-blocklength analysis,” IEEE Trans. Wireless Comm., vol. 22, no. 12, pp. 8723–8735, Dec. 2023.
  62. A. O. Kislal, A. Lancho, G. Durisi, and E. Ström, “Efficient evaluation of the error probability for pilot-assisted URLLC with Massive MIMO,” IEEE J. Sel. Areas Commun., vol. 41, no. 7, pp. 1969–1981, Jul. 2023.
  63. P. C. F. Eggers, M. Angjelichinoski, and P. Popovski, “Wireless channel modeling perspectives for ultra-reliable communications,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2229–2243, 2019.
  64. M. Angjelichinoski, K. F. Trillingsgaard, and P. Popovski, “A statistical learning approach to ultra-reliable low latency communication,” IEEE Trans. Commun., vol. 67, no. 7, pp. 5153–5166, 2019.
  65. T. Kallehauge, A. E. Kalør, P. Ramírez-Espinosa, M. Guillaud, and P. Popovski, “Delivering ultra-reliable low-latency communications via statistical radio maps,” IEEE Wireless Comun., vol. 30, no. 2, pp. 14–20, 2023.
  66. N. Mehrnia and S. Coleri, “Wireless channel modeling based on extreme value theory for ultra-reliable communications,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1064–1076, 2022.
  67. ——, “Non-stationary wireless channel modeling approach based on extreme value theory for ultra-reliable communications,” IEEE Trans. Veh. Tech., vol. 70, no. 8, pp. 8264–8268, 2021.
  68. ——, “Multivariate extreme value theory based channel modeling for ultra-reliable communications,” IEEE Trans. Wireless Commun., 2023, early access.
  69. ——, “Extreme value theory based rate selection for ultra-reliable communications,” IEEE Trans. Veh. Tech., vol. 71, no. 6, pp. 6727–6731, 2022.
  70. ——, “Incorporation of confidence interval into rate selection based on the extreme value theory for ultra-reliable communications,” in Proc. Joint Eur. Conf. Netw. Commun. & 6G Summit (EuCNC/6G Summit), Grenoble, France, 2022, pp. 118–123.
  71. C.-F. Liu and M. Bennis, “Ultra-reliable and low-latency vehicular transmission: An extreme value theory approach,” IEEE Commun. Lett., vol. 22, no. 6, pp. 1292–1295, 2018.
  72. M. K. Abdel-Aziz, S. Samarakoon, C.-F. Liu, M. Bennis, and W. Saad, “Optimized age of information tail for ultra-reliable low-latency communications in vehicular networks,” IEEE Trans. Commun, vol. 68, no. 3, pp. 1911–1924, 2020.
  73. S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed federated learning for ultra-reliable low-latency vehicular communications,” IEEE Trans. Commun., vol. 68, no. 2, pp. 1146–1159, 2020.
  74. P. Cui, S. Han, X. Xu, J. Zhang, P. Zhang, and S. Ren, “End-to-end delay performance analysis of industrial internet of things: A stochastic network calculus perspective,” IEEE Internet Things J., 2023, early access.
  75. O. Adamuz-Hinojosa, V. Sciancalepore, P. Ameigeiras, J. M. Lopez-Soler, and X. Costa-Pérez, “A stochastic network calculus (SNC)-based model for planning B5G uRLLC RAN slices,” IEEE Trans. Wireless Commun., vol. 22, no. 2, pp. 1250–1265, 2023.
  76. Y. Chen, H. Lu, L. Qin, Y. Deng, and A. Nallanathan, “When xURLLC meets noma: A stochastic network calculus perspective,” IEEE Commun. Mag., 2023, early access.
  77. A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in the era of deep learning: Model-based, AI-based, or both?” IEEE Trans. Commun., vol. 67, no. 10, pp. 7331–7376, 2019.
  78. A. G. Onalan and S. Coleri, “Optimization theory and deep learning based resource allocation in net-zero-energy networks with short packets,” IEEE Commun. Lett., vol. 27, no. 8, pp. 2098–2102, 2023.
  79. S. Coleri, A. G. Onalan, and M. D. Renzo, “Optimization theory based deep learning in wireless network design,” 2023, submitted for publication.
  80. N. Khan, S. Coleri, A. Abdallah, A. Celik, and A. M. Eltawil, “Explainable and robust artificial intelligence for trustworthy resource management in 6G networks,” IEEE Commun. Mag., 2023, early access.
  81. T. Zhang, H. Qiu, M. Mellia, Y. Li, H. Li, and K. Xu, “Interpreting AI for networking: Where we are and where we are going,” IEEE Commun. Mag., vol. 60, no. 2, pp. 25–31, 2022.
  82. A. T. Z. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor, “Experienced deep reinforcement learning with generative adversarial networks (GANs) for model-free ultra reliable low latency communication,” IEEE Trans. Commun., vol. 69, no. 2, pp. 884–899, 2021.
  83. A. Salh et al., “Refiner GAN algorithmically enabled deep-RL for guaranteed traffic packets in real-time URLLC B5G communication systems,” IEEE Access, vol. 10, pp. 50 662–50 676, 2022.
  84. C. She et al., “A tutorial on ultrareliable and low-latency communications in 6G: Integrating domain knowledge into deep learning,” Proc. IEEE, vol. 109, no. 3, pp. 204–246, 2021.
  85. A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision and research directions for 6G and beyond,” IEEE Commun. Mag., vol. 61, no. 11, pp. 128–134, 2023.
  86. H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. M. Leung, “Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges,” IEEE Commun. Mag., vol. 55, no. 8, pp. 138–145, Aug. 2017.
  87. J. Mei, X. Wang, K. Zheng, G. Boudreau, A. B. Sediq, and H. Abou-Zeid, “Intelligent radio access network slicing for service provisioning in 6G: A hierarchical deep reinforcement learning approach,” IEEE Trans. Commun., vol. 69, no. 9, pp. 6063–6078, Sep. 2021.
  88. W. Wu et al., “AI-native network slicing for 6G networks,” IEEE Wireless Commun., vol. 29, no. 1, pp. 96–103, Feb. 2022.
  89. A. Leivadeas and M. Falkner, “A survey on intent-based networking,” IEEE Commun. Surv. Tutorials, vol. 25, no. 1, pp. 625–655, Jan. 2023.
  90. G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over fading channels,” IEEE Trans. Info. Theory, vol. 45, no. 5, pp. 1468–1489, Jul. 1999.
  91. K.-H. Ngo, G. Durisi, A. Graell i Amat, P. Popovski, A. E. Kalør, and B. Soret, “Unsourced multiple access with common alarm messages: Network slicing for massive and critical IoT,” IEEE Trans. Commun., Oct. 2023.
  92. E. N. Tominaga, O. L. A. López, H. Alves, R. D. Souza, and L. Terças, “Performance analysis of centralized and distributed Massive MIMO for MTC,” in Proc. Joint Eur. Conf. Netw Commun. & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 2023, to be published.
  93. M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–3557, May 2020.
  94. M. M. Amiri, T. M. Duman, D. Gündüz, S. R. Kulkarni, and H. V. Poor, “Blind federated edge learning,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5129–5143, Aug. 2021.
  95. L. Qiao, Z. Gao, Z. Li, and D. Gündüz, “Unsourced massive access-based digital over-the-air computation for efficient federated edge learning,” arXiv:2305.10609, 2023.
  96. G. Mergen and L. Tong, “Type based estimation over multiaccess channels,” IEEE Trans. Sig. Process., vol. 54, no. 2, pp. 613–626, Feb. 2006.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com