Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Dual-Stage Evolutionary Algorithm for Finding Robust Solutions (2401.01070v1)

Published 2 Jan 2024 in cs.NE

Abstract: In robust optimization problems, the magnitude of perturbations is relatively small. Consequently, solutions within certain regions are less likely to represent the robust optima when perturbations are introduced. Hence, a more efficient search process would benefit from increased opportunities to explore promising regions where global optima or good local optima are situated. In this paper, we introduce a novel robust evolutionary algorithm named the dual-stage robust evolutionary algorithm (DREA) aimed at discovering robust solutions. DREA operates in two stages: the peak-detection stage and the robust solution-searching stage. The primary objective of the peak-detection stage is to identify peaks in the fitness landscape of the original optimization problem. Conversely, the robust solution-searching stage focuses on swiftly identifying the robust optimal solution using information obtained from the peaks discovered in the initial stage. These two stages collectively enable the proposed DREA to efficiently obtain the robust optimal solution for the optimization problem. This approach achieves a balance between solution optimality and robustness by separating the search processes for optimal and robust optimal solutions. Experimental results demonstrate that DREA significantly outperforms five state-of-the-art algorithms across 18 test problems characterized by diverse complexities. Moreover, when evaluated on higher-dimensional robust optimization problems (100-$D$ and 200-$D$), DREA also demonstrates superior performance compared to all five counterpart algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments-A survey,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 3, pp. 303–317, 2005.
  2. H.-G. Beyer and B. Sendhoff, “Robust optimization–A comprehensive survey,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 33-34, pp. 3190–3218, 2007.
  3. W. Du, Y. Tang, S. Y. S. Leung, L. Tong, A. V. Vasilakos, and F. Qian, “Robust order scheduling in the discrete manufacturing industry: A multiobjective optimization approach,” IEEE Transactions on Industrial Informatics, vol. 14, no. 1, pp. 253–264, 2018.
  4. Z. Fan, J. Liu, T. Sorensen, and P. Wang, “Improved differential evolution based on stochastic ranking for robust layout synthesis of MEMS components,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 937–948, 2009.
  5. W. Du, W. Song, Y. Tang, Y. Jin, and F. Qian, “Searching for robustness intervals in evolutionary robust optimization,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 1, pp. 58–72, 2022.
  6. G. Lei, J. Zhu, Y. Guo, J. Hu, W. Xu, and K. Shao, “Robust design optimization of PM-SMC motors for six sigma quality manufacturing,” IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 3953–3956, 2013.
  7. G. Sun, G. Li, S. Zhou, H. Li, S. Hou, and Q. Li, “Crashworthiness design of vehicle by using multiobjective robust optimization,” Structural and Multidisciplinary Optimization, vol. 44, no. 1, pp. 99–110, 2011.
  8. L. T. Bui, H. A. Abbass, M. Barlow, and A. Bender, “Robustness against the decision-maker’s attitude to risk in problems with conflicting objectives,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 1, pp. 1–19, 2010.
  9. M. Li, R. Silva, F. Guimarães, and D. Lowther, “A new robust dominance criterion for multiobjective optimization,” IEEE Transactions on Magnetics, vol. 51, no. 3, p. 8201504, 2015.
  10. D. Wiesmann, U. Hammel, and T. Back, “Robust design of multilayer optical coatings by means of evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 2, no. 4, pp. 162–167, 1998.
  11. J. S. Liu, Monte Carlo strategies in scientific computing. Springer Science & Business Media, 2008.
  12. X. Fei, J. Branke, and N. Gülpınar, “New sampling strategies when searching for robust solutions,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 273–287, 2019.
  13. S. Tsutsui and A. Ghosh, “Genetic algorithms with a robust solution searching scheme,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 3, pp. 201–208, 1997.
  14. S. Z. Mirjalili, S. Mirjalili, H. Zhang, S. Chalup, and N. Noman, “Improving the reliability of implicit averaging methods using new conditional operators for robust optimization,” Swarm and Evolutionary Computation, vol. 51, p. 100579, 2019.
  15. J. W. Kruisselbrink, M. T. Emmerich, A. H. Deutz, and T. Bäck, “A robust optimization approach using kriging metamodels for robustness approximation in the CMA-ES,” in IEEE Congress on Evolutionary Computation, pp. 1–8, IEEE, 2010.
  16. Y. Liu, Surrogate-Assisted Unified Optimization Framework for Investigating Marine Structural Design Under Information Uncertainty. PhD thesis, The University of Michigan, 2016.
  17. Y.-S. Ong, P. B. Nair, and K. Y. Lum, “Max-min surrogate-assisted evolutionary algorithm for robust design,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 392–404, 2006.
  18. I. Paenke, J. Branke, and Y. Jin, “Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 405–420, 2006.
  19. T. Ray, “Constrained robust optimal design using a multiobjective evolutionary algorithm,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 1, pp. 419–424, IEEE, 2002.
  20. Y. Jin and B. Sendhoff, “Trade-off between performance and robustness: An evolutionary multiobjective approach,” in International Conference on Evolutionary Multi-criterion Optimization, pp. 237–251, Springer, 2003.
  21. K. Deb and H. Gupta, “Introducing robustness in multi-objective optimization,” Evolutionary Computation, vol. 14, no. 4, pp. 463–494, 2006.
  22. I. R. Meneghini, F. G. Guimaraes, and A. Gaspar-Cunha, “Competitive coevolutionary algorithm for robust multi-objective optimization: The worst case minimization,” in 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 586–593, IEEE, 2016.
  23. Z. He, G. G. Yen, and J. Lv, “Evolutionary multiobjective optimization with robustness enhancement,” IEEE Transactions on Evolutionary Computation, vol. 24, no. 3, pp. 494–507, 2020.
  24. Z. He, G. G. Yen, and Z. Yi, “Robust multiobjective optimization via evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 316–330, 2019.
  25. R. R. Chan and S. D. Sudhoff, “An evolutionary computing approach to robust design in the presence of uncertainties,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 6, pp. 900–912, 2010.
  26. M. Asafuddoula, H. K. Singh, and T. Ray, “Six-sigma robust design optimization using a many-objective decomposition-based evolutionary algorithm,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 4, pp. 490–507, 2015.
  27. N. Chen, T. Qiu, Z. Lu, and D. O. Wu, “An adaptive robustness evolution algorithm with self-competition and its 3D deployment for internet of things,” IEEE/ACM Transactions on Networking, vol. 30, no. 1, pp. 368–381, 2022.
  28. R. Cheng, M. Li, K. Li, and X. Yao, “Evolutionary multiobjective optimization-based multimodal optimization: Fitness landscape approximation and peak detection,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 5, pp. 692–706, 2018.
  29. W. Hu, G. G. Yen, and G. Luo, “Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system,” IEEE Transactions on Cybernetics, vol. 47, no. 6, pp. 1446–1459, 2017.
  30. C. Zhu, X. Cai, Z. Fan, and M. Sulaman, “A two-phase many-objective evolutionary algorithm with penalty based adjustment for reference lines,” in 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2161–2168, IEEE, 2016.
  31. Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “A new two-stage evolutionary algorithm for many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 748–761, 2019.
  32. F. Ming, W. Gong, and L. Wang, “A two-stage evolutionary algorithm with balanced convergence and diversity for many-objective optimization,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 10, pp. 6222–6234, 2022.
  33. Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and pull search for solving constrained multi-objective optimization problems,” Swarm and Evolutionary Computation, vol. 44, pp. 665–679, 2019.
  34. M. Ming, R. Wang, H. Ishibuchi, and T. Zhang, “A novel dual-stage dual-population evolutionary algorithm for constrained multiobjective optimization,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 5, pp. 1129–1143, 2022.
  35. F. Ming, W. Gong, H. Zhen, S. Li, L. Wang, and Z. Liao, “A simple two-stage evolutionary algorithm for constrained multi-objective optimization,” Knowledge-Based Systems, vol. 228, p. 107263, 2021.
  36. Z.-G. Chen, Z.-H. Zhan, H. Wang, and J. Zhang, “Distributed individuals for multiple peaks: A novel differential evolution for multimodal optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 24, no. 4, pp. 708–719, 2020.
  37. W. Gao, G. G. Yen, and S. Liu, “A cluster-based differential evolution with self-adaptive strategy for multimodal optimization,” IEEE Transactions on Cybernetics, vol. 44, no. 8, pp. 1314–1327, 2014.
  38. A. Prugel-Bennett and M.-H. Tayarani-Najaran, “Maximum satisfiability: Anatomy of the fitness landscape for a hard combinatorial optimization problem,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 3, pp. 319–338, 2012.
  39. T. Jones and S. Forrest, “Fitness distance correlation as a measure of problem difficulty for genetic algorithms,” in Proceedings of the Sixth International Conference on Genetic Algorithms, vol. 95, pp. 184–192, 1995.
  40. O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph, “Exploratory landscape analysis,” in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836, 2011.
  41. M. A. Muñoz, M. Kirley, and S. K. Halgamuge, “Exploratory landscape analysis of continuous space optimization problems using information content,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 1, pp. 74–87, 2015.
  42. G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos, “A study of NK landscapes’ basins and local optima networks,” in Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 555–562, 2008.
  43. J. Adair, G. Ochoa, and K. M. Malan, “Local optima networks for continuous fitness landscapes,” in Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1407–1414, 2019.
  44. S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-based differential evolution,” IEEE Transactions on Evolutionary computation, vol. 12, no. 1, pp. 64–79, 2008.
  45. X. Yao, Q. Zhao, D. Gong, and S. Zhu, “Solution of large-scale many-objective optimization problems based on dimension reduction and solving knowledge guided evolutionary algorithm,” IEEE Transactions on Evolutionary Computation, vol. 27, no. 3, pp. 416–429, 2023.
  46. A. S. Azad, M. Islam, and S. Chakraborty, “A heuristic initialized stochastic memetic algorithm for MDPVRP with interdependent depot operations,” IEEE Transactions on Cybernetics, vol. 47, no. 12, pp. 4302–4315, 2017.
  47. J. Zhang and A. C. Sanderson, Adaptive differential evolution. Berlin/Heidelberg, Germany, Springer, 2009.
  48. D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B. S. Lee, “Inverse multi-objective robust evolutionary design,” Genetic Programming and Evolvable Machines, vol. 7, no. 4, pp. 383–404, 2006.
  49. B.-Y. Qu, P. N. Suganthan, and J.-J. Liang, “Differential evolution with neighborhood mutation for multimodal optimization,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 5, pp. 601–614, 2012.
  50. J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.
  51. R. Thomsen, “Multimodal optimization using crowding-based differential evolution,” in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2, pp. 1382–1389, IEEE, 2004.
  52. S. Mirjalili and A. Lewis, “Obstacles and difficulties for robust benchmark problems: A novel penalty-based robust optimisation method,” Information Sciences, vol. 328, pp. 485–509, 2016.

Summary

We haven't generated a summary for this paper yet.