Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Automatic Modulation Recognition through Robust Global Feature Extraction (2401.01056v1)

Published 2 Jan 2024 in eess.SP, cs.AI, and cs.LG

Abstract: Automatic Modulation Recognition (AMR) plays a crucial role in wireless communication systems. Deep learning AMR strategies have achieved tremendous success in recent years. Modulated signals exhibit long temporal dependencies, and extracting global features is crucial in identifying modulation schemes. Traditionally, human experts analyze patterns in constellation diagrams to classify modulation schemes. Classical convolutional-based networks, due to their limited receptive fields, excel at extracting local features but struggle to capture global relationships. To address this limitation, we introduce a novel hybrid deep framework named TLDNN, which incorporates the architectures of the transformer and long short-term memory (LSTM). We utilize the self-attention mechanism of the transformer to model the global correlations in signal sequences while employing LSTM to enhance the capture of temporal dependencies. To mitigate the impact like RF fingerprint features and channel characteristics on model generalization, we propose data augmentation strategies known as segment substitution (SS) to enhance the model's robustness to modulation-related features. Experimental results on widely-used datasets demonstrate that our method achieves state-of-the-art performance and exhibits significant advantages in terms of complexity. Our proposed framework serves as a foundational backbone that can be extended to different datasets. We have verified the effectiveness of our augmentation approach in enhancing the generalization of the models, particularly in few-shot scenarios. Code is available at \url{https://github.com/AMR-Master/TLDNN}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. X. Li, F. Dong, S. Zhang, W. Guo et al., “A survey on deep learning techniques in wireless signal recognition,” Wireless Communications and Mobile Computing, vol. 2019, 2019.
  2. B. Jdid, K. Hassan, I. Dayoub, W. H. Lim, and M. Mokayef, “Machine learning based automatic modulation recognition for wireless communications: A comprehensive survey,” IEEE Access, vol. 9, pp. 57 851–57 873, 2021.
  3. R. Zhou, F. Liu, and C. W. Gravelle, “Deep learning for modulation recognition: A survey with a demonstration,” IEEE Access, vol. 8, pp. 67 366–67 376, 2020.
  4. O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: classical approaches and new trends,” IET communications, vol. 1, no. 2, pp. 137–156, 2007.
  5. V. G. Chavali and C. R. Da Silva, “Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-gaussian channels,” IEEE Transactions on Communications, vol. 59, no. 8, pp. 2051–2056, 2011.
  6. W. Wei and J. M. Mendel, “Maximum-likelihood classification for digital amplitude-phase modulations,” IEEE transactions on Communications, vol. 48, no. 2, pp. 189–193, 2000.
  7. J. Zhang, D. Cabric, F. Wang, and Z. Zhong, “Cooperative modulation classification for multipath fading channels via expectation-maximization,” IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6698–6711, 2017.
  8. A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation recognition of communication signals,” IEEE Transactions on communications, vol. 46, no. 4, pp. 431–436, 1998.
  9. P. Lallo, “Signal classification by discrete fourier transform,” in MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No. 99CH36341), vol. 1.   IEEE, 1999, pp. 197–201.
  10. L. Zhou, Z. Sun, and W. Wang, “Learning to short-time fourier transform in spectrum sensing,” Physical Communication, vol. 25, pp. 420–425, 2017.
  11. H.-C. Wu, M. Saquib, and Z. Yun, “Novel automatic modulation classification using cumulant features for communications via multipath channels,” IEEE Transactions on Wireless Communications, vol. 7, no. 8, pp. 3098–3105, 2008.
  12. M. Zhang, Y. Zeng, Z. Han, and Y. Gong, “Automatic modulation recognition using deep learning architectures,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).   IEEE, 2018, pp. 1–5.
  13. M. W. Aslam, Z. Zhu, and A. K. Nandi, “Automatic modulation classification using combination of genetic programming and knn,” IEEE Transactions on wireless communications, vol. 11, no. 8, pp. 2742–2750, 2012.
  14. S. Peng, S. Sun, and Y.-D. Yao, “A survey of modulation classification using deep learning: Signal representation and data preprocessing,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 7020–7038, 2021.
  15. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  16. T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563–575, 2017.
  17. Q. Wang, L. Wang, L. Yu, J. Wang, and X. Zhang, “An id-based robust identification approach toward multitype noncooperative drones,” IEEE Sensors Journal, vol. 23, no. 9, pp. 10 179–10 192, 2023.
  18. X. Zhao, L. Wang, Q. Wang, and J. Wang, “A hierarchical framework for drone identification based on radio frequency machine learning,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), 2022, pp. 391–396.
  19. T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modulation recognition networks,” in Engineering Applications of Neural Networks: 17th International Conference, EANN 2016, Aberdeen, UK, September 2-5, 2016, Proceedings 17.   Springer, 2016, pp. 213–226.
  20. T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio signal classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168–179, 2018.
  21. D. Zhang, Y. Lu, Y. Li, W. Ding, and B. Zhang, “High-order convolutional attention networks for automatic modulation classification in communication,” IEEE Transactions on Wireless Communications, pp. 1–1, 2022.
  22. Z. Chen, H. Cui, J. Xiang, K. Qiu, L. Huang, S. Zheng, S. Chen, Q. Xuan, and X. Yang, “Signet: A novel deep learning framework for radio signal classification,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 529–541, 2021.
  23. Y. Zeng, M. Zhang, F. Han, Y. Gong, and J. Zhang, “Spectrum analysis and convolutional neural network for automatic modulation recognition,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 929–932, 2019.
  24. S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani, and Y.-D. Yao, “Modulation classification based on signal constellation diagrams and deep learning,” IEEE transactions on neural networks and learning systems, vol. 30, no. 3, pp. 718–727, 2018.
  25. X. Zha, H. Peng, X. Qin, G. Li, and S. Yang, “A deep learning framework for signal detection and modulation classification,” Sensors, vol. 19, no. 18, p. 4042, 2019.
  26. S. Lin, Y. Zeng, and Y. Gong, “Modulation recognition using signal enhancement and multistage attention mechanism,” IEEE Transactions on Wireless Communications, vol. 21, no. 11, pp. 9921–9935, 2022.
  27. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, 2012.
  28. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
  29. D. Hong, Z. Zhang, and X. Xu, “Automatic modulation classification using recurrent neural networks,” in 2017 3rd IEEE International Conference on Computer and Communications (ICCC).   IEEE, 2017, pp. 695–700.
  30. S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, “Deep learning models for wireless signal classification with distributed low-cost spectrum sensors,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 3, pp. 433–445, 2018.
  31. Z. Ke and H. Vikalo, “Real-time radio technology and modulation classification via an lstm auto-encoder,” IEEE Transactions on Wireless Communications, vol. 21, no. 1, pp. 370–382, 2021.
  32. X. Liu, D. Yang, and A. El Gamal, “Deep neural network architectures for modulation classification,” in 2017 51st Asilomar Conference on Signals, Systems, and Computers.   IEEE, 2017, pp. 915–919.
  33. J. Xu, C. Luo, G. Parr, and Y. Luo, “A spatiotemporal multi-channel learning framework for automatic modulation recognition,” IEEE Wireless Communications Letters, vol. 9, no. 10, pp. 1629–1632, 2020.
  34. Z. Zhang, H. Luo, C. Wang, C. Gan, and Y. Xiang, “Automatic modulation classification using cnn-lstm based dual-stream structure,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 13 521–13 531, 2020.
  35. S. Huang, R. Dai, J. Huang, Y. Yao, Y. Gao, F. Ning, and Z. Feng, “Automatic modulation classification using gated recurrent residual network,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7795–7807, 2020.
  36. K. Liu, W. Gao, and Q. Huang, “Automatic modulation recognition based on a dcn-bilstm network,” Sensors, vol. 21, no. 5, p. 1577, 2021.
  37. J. N. Njoku, M. E. Morocho-Cayamcela, and W. Lim, “Cgdnet: Efficient hybrid deep learning model for robust automatic modulation recognition,” IEEE Networking Letters, vol. 3, no. 2, pp. 47–51, 2021.
  38. W. Zhang, X. Yang, C. Leng, J. Wang, and S. Mao, “Modulation recognition of underwater acoustic signals using deep hybrid neural networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 8, pp. 5977–5988, 2022.
  39. S. Chang, R. Zhang, K. Ji, S. Huang, and Z. Feng, “A hierarchical classification head based convolutional gated deep neural network for automatic modulation classification,” IEEE Transactions on Wireless Communications, vol. 21, no. 10, pp. 8713–8728, 2022.
  40. L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning: Concepts, cnn architectures, challenges, applications, future directions,” Journal of big Data, vol. 8, pp. 1–74, 2021.
  41. W. Xiao, Z. Luo, and Q. Hu, “A review of research on signal modulation recognition based on deep learning,” Electronics, vol. 11, no. 17, p. 2764, 2022.
  42. N. Soltanieh, Y. Norouzi, Y. Yang, and N. C. Karmakar, “A review of radio frequency fingerprinting techniques,” IEEE Journal of Radio Frequency Identification, vol. 4, no. 3, pp. 222–233, 2020.
  43. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  44. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  45. A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold, J. Uszkoreit, L. Beyer, M. Minderer, M. Dehghani, N. Houlsby, S. Gelly, T. Unterthiner, and X. Zhai, “An image is worth 16x16 words: Transformers for image recognition at scale,” 2021.
  46. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–10 022.
  47. X. Liu, “Automatic modulation classification based on improved r-transformer,” in 2021 International Wireless Communications and Mobile Computing (IWCMC).   IEEE, 2021, pp. 1–8.
  48. S. Hamidi-Rad and S. Jain, “Mcformer: A transformer based deep neural network for automatic modulation classification,” in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6.
  49. Y. Chen, B. Dong, C. Liu, W. Xiong, and S. Li, “Abandon locality: Frame-wise embedding aided transformer for automatic modulation recognition,” IEEE Communications Letters, vol. 27, no. 1, pp. 327–331, 2023.
  50. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.
  51. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
  52. N. Shazeer, Z. Lan, Y. Cheng, N. Ding, and L. Hou, “Talking-heads attention,” 2020.
  53. N. Shazeer, “Glu variants improve transformer,” arXiv preprint arXiv:2002.05202, 2020.
  54. T. J. O’shea and N. West, “Radio machine learning dataset generation with gnu radio,” in Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016.
  55. I. Loshchilov and F. Hutter, “Fixing weight decay regularization in adam,” 2017.
  56. L. Huang, W. Pan, Y. Zhang, L. Qian, N. Gao, and Y. Wu, “Data augmentation for deep learning-based radio modulation classification,” IEEE access, vol. 8, pp. 1498–1506, 2019.
  57. K. Chae, J. Park, and Y. Kim, “Rethinking autocorrelation for deep spectrum sensing in cognitive radio networks,” IEEE Internet of Things Journal, vol. 10, no. 1, pp. 31–41, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.