Personalized Dynamic Pricing Policy for Electric Vehicles: Reinforcement learning approach (2401.00661v1)
Abstract: With the increasing number of fast-electric vehicle charging stations (fast-EVCSs) and the popularization of information technology, electricity price competition between fast-EVCSs is highly expected, in which the utilization of public and/or privacy-preserved information will play a crucial role. Self-interest electric vehicle (EV) users, on the other hand, try to select a fast-EVCS for charging in a way to maximize their utilities based on electricity price, estimated waiting time, and their state of charge. While existing studies have largely focused on finding equilibrium prices, this study proposes a personalized dynamic pricing policy (PeDP) for a fast-EVCS to maximize revenue using a reinforcement learning (RL) approach. We first propose a multiple fast-EVCSs competing simulation environment to model the selfish behavior of EV users using a game-based charging station selection model with a monetary utility function. In the environment, we propose a Q-learning-based PeDP to maximize fast-EVCS' revenue. Through numerical simulations based on the environment: (1) we identify the importance of waiting time in the EV charging market by comparing the classic Bertrand competition model with the proposed PeDP for fast-EVCSs (from the system perspective); (2) we evaluate the performance of the proposed PeDP and analyze the effects of the information on the policy (from the service provider perspective); and (3) it can be seen that privacy-preserved information sharing can be misused by artificial intelligence-based PeDP in a certain situation in the EV charging market (from the customer perspective).
- doi:10.1016/j.trb.2016.05.018. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261516303319
- doi:10.1016/j.trb.2017.10.011. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261517305052
- doi:10.1016/j.trb.2017.04.016. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261516304349
- doi:10.1016/j.trb.2018.11.001. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261517311402
- doi:10.1016/j.trb.2020.03.001. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261519306976
- doi:10.1109/TSG.2015.2504502. URL http://ieeexplore.ieee.org/document/7352372/
- doi:10.1016/j.apenergy.2018.05.042. URL https://doi.org/10.1016/j.apenergy.2018.05.042https://linkinghub.elsevier.com/retrieve/pii/S0306261918307359
- doi:10.1109/TSTE.2018.2810274.
- doi:10.1016/j.apenergy.2016.06.025. URL http://dx.doi.org/10.1016/j.apenergy.2016.06.025
- doi:10.1109/TSG.2014.2362994. URL http://ieeexplore.ieee.org/document/6940323/
- doi:10.1109/ISGT.2012.6175601. URL http://ieeexplore.ieee.org/document/6175601/
- doi:10.1109/ISGT.2012.6175791. URL http://ieeexplore.ieee.org/document/6175791/
- doi:10.1109/TSG.2014.2374592. URL http://ieeexplore.ieee.org/document/6987327/
- doi:10.1109/TTE.2019.2897087. URL https://ieeexplore.ieee.org/document/8632961/
- doi:https://doi.org/10.1016/j.trc.2017.04.008. URL https://www.sciencedirect.com/science/article/pii/S0968090X17301134
- doi:10.1016/j.trb.2017.05.002. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261516305343
- doi:https://doi.org/10.1016/j.trc.2021.103186. URL https://www.sciencedirect.com/science/article/pii/S0968090X21002023
- doi:10.1016/j.trb.2019.02.003. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261518304776
- doi:10.1016/j.trb.2019.07.009. URL https://linkinghub.elsevier.com/retrieve/pii/S019126151831172X
- doi:10.1016/j.trf.2018.04.012. URL https://linkinghub.elsevier.com/retrieve/pii/S1369847817305168
- doi:10.1016/j.trf.2015.04.014. URL https://linkinghub.elsevier.com/retrieve/pii/S1369847815000777
- doi:10.1016/j.tra.2015.04.003. URL https://linkinghub.elsevier.com/retrieve/pii/S0965856415000804
- doi:10.1016/j.trb.2013.07.010. URL https://linkinghub.elsevier.com/retrieve/pii/S0191261513001252
- doi:10.1109/TITS.2021.3086006.
- Tesla Semi (2020). URL https://www.tesla.com/semi?redirect=no
- doi:10.1007/978-3-642-35311-6. URL http://link.springer.com/10.1007/978-3-642-35311-6{_}12http://link.springer.com/10.1007/978-3-642-35311-6
- doi:10.1007/s00182-017-0596-4. URL http://link.springer.com/10.1007/s00182-017-0596-4
- arXiv:1511.07907, doi:10.1109/TSG.2015.2504502.
- doi:10.1109/TSG.2016.2546281. URL http://ieeexplore.ieee.org/document/7440866/
- doi:10.1109/PES.2011.6039082. URL https://ieeexplore.ieee.org/document/6039082/
- doi:10.1109/CDC.2013.6760775. URL http://ieeexplore.ieee.org/document/6760775/
- doi:10.1109/ACC.2013.6580628. URL http://ieeexplore.ieee.org/document/6580628/
- doi:10.1109/COMST.2016.2518628. URL http://ieeexplore.ieee.org/document/7383228/
- doi:https://doi.org/10.1016/j.trb.2020.08.005. URL https://www.sciencedirect.com/science/article/pii/S0191261520303829
- doi:https://doi.org/10.1016/j.trb.2021.08.015. URL https://www.sciencedirect.com/science/article/pii/S0191261521001636
- doi:10.1038/nature14236. URL http://www.nature.com/articles/nature14236
- doi:10.1007/978-1-84800-938-7. URL http://link.springer.com/10.1007/978-1-84800-938-7