Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Sonified Hertzsprung-Russell Diagram (2401.00488v1)

Published 31 Dec 2023 in astro-ph.IM and astro-ph.SR

Abstract: Understanding the physical properties of stars, and putting these properties into the context of stellar evolution, is a core challenge in astronomical research. A key visualization in studying stellar evolution is the Hertzsprung-Russell diagram (HRD), organizing data about stellar luminosity and colour into a form that is informative about stellar structure and evolution. However, connecting the HRD with other sources of information, including stellar time series, is an outstanding challenge. Here we present a new method to turn stellar time series into sound. This method encodes physically meaningful features such that auditory comparisons between sonifications of different stars preserve astrophysical differences between them. We present an interactive multimedia version of the HRD that combines both visual and auditory components and that allows exploration of different types of stars both on and off the main sequence through both visual and auditory media.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. P. Dal Tio, A. Mazzi, L. Girardi, M. Barbieri, et al., “Dissecting the Gaia HR diagram within 200 pc,” Monthly Notices of the Royal Astronomical Society, vol. 506, no. 4, pp. 5681–5697, Oct. 2021.
  2. T.-O. Husser, S. Kamann, S. Dreizler, M. Wendt, et al., “MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397. I. The first comprehensive HRD of a globular cluster,” Astronomy & Astrophysics, 2016.
  3. J. Choi, A. Dotter, C. Conroy, M. Cantiello, B. Paxton, and B. D. Johnson, “Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models,” The Astrophysical Journal, vol. 823, p. 102, June 2016.
  4. M. Kounkel, K. G. Stassun, K. Covey, and L. Hartmann, “A gravitational and dynamical framework of star formation: the Orion nebula,” Monthly Notices of the Royal Astronomical Society, vol. 517, no. 1, pp. 161–174, Nov. 2022.
  5. M. Kilic, N. C. Hambly, P. Bergeron, C. Genest-Beaulieu, and N. Rowell, “Gaia reveals evidence for merged white dwarfs,” Monthly Notices of the Royal Astronomical Society, vol. 479, no. 1, pp. L113–L117, Sept. 2018.
  6. Gaia Collaboration, “Gaia Early Data Release 3: The Gaia Catalogue of Nearby Stars,” arXiv e-prints, p. arXiv:2012.02061, Dec. 2020.
  7. W. J. Borucki, D. Koch, G. Basri, N. Batalha, et al., “Kepler Planet-Detection Mission: Introduction and First Results,” Science, vol. 327, no. 5968, p. 977, Feb. 2010.
  8. G. R. Ricker, D. W. Latham, R. K. Vanderspek, K. A. Ennico, et al., “Transiting Exoplanet Survey Satellite (TESS),” in American Astronomical Society Meeting Abstracts #215, ser. American Astronomical Society Meeting Abstracts, vol. 215, Jan. 2010, p. 450.06.
  9. M. B. Nielsen, L. Gizon, R. H. Cameron, and M. Miesch, “Starspot rotation rates versus activity cycle phase: Butterfly diagrams of Kepler stars are unlike that of the Sun,” Astronomy & Astrophysics, vol. 622, p. A85, Feb. 2019.
  10. B. Kirk, K. Conroy, A. Prša, M. Abdul-Masih, et al., “Kepler Eclipsing Binary Stars. VII. The Catalog of Eclipsing Binaries Found in the Entire Kepler Data Set,” The Astronomical Journal, vol. 151, no. 3, p. 68, Mar. 2016.
  11. C. Aerts, “Probing the interior physics of stars through asteroseismology,” Reviews of Modern Physics, vol. 93, no. 1, p. 015001, Jan. 2021.
  12. J. R. A. Davenport, K. R. Covey, R. W. Clarke, A. C. Boeck, J. Cornet, and S. L. Hawley, “The Evolution of Flare Activity with Stellar Age,” The Astrophysical Journal, vol. 871, no. 2, p. 241, Feb. 2019.
  13. R. M. Tutchton, M. A. Wood, M. D. Still, S. B. Howell, J. K. Cannizzo, and A. P. Smale, “Sonification of of Kepler Field SU UMa Cataclysmic Variable Stars V344 Lyr and V1504 Cyg,” Journal of the Southeastern Association for Research in Astronomy, vol. 6, pp. 21–35, July 2012.
  14. W. L. Diaz-Merced, R. M. Candey, N. Brickhouse, M. Schneps, et al., “Sonification of Astronomical Data,” in New Horizons in Time Domain Astronomy, E. Griffin, R. Hanisch, and R. Seaman, Eds., vol. 285, Apr. 2012, pp. 133–136.
  15. M. Quinton, I. McGregor, and D. Benyon, “Sonifying the solar system,” in The 22nd International Conference on Auditory Display (ICAD-2016), Canberra, Australia, 2016.
  16. B. J. Tomlinson, R. M. Winters, C. Latina, S. Bhat, M. Rane, and B. N. Walker, “Solar system sonification: exploring earth and its neighbors through sound,” in 23rd International Conference on Auditory Display (ICAD 2017), State College, PA, USA, 2017.
  17. S. Bardelli, C. Ferretti, L. A. Ludovico, G. Presti, and M. Rinaldi, “A Sonification of the zCOSMOS Galaxy Dataset,” arXiv e-prints, p. arXiv:2202.05539, Feb. 2022.
  18. J. Tucker Brown, C. M. Harrison, A. Zanella, and J. Trayford, “Evaluating the efficacy of sonification for signal detection in univariate, evenly sampled light curves using ASTRONIFY,” Monthly Notices of the Royal Astronomical Society, vol. 516, no. 4, pp. 5674–5683, Nov. 2022.
  19. R. J. Winton, T. M. Gable, J. Schuett, and B. N. Walker, “A sonification of kepler space telescope star data,” in Proceedings of the 18th International Conference on Auditory Display (ICAD-2012), Atlanta, GA, USA, 2012.
  20. C. A. Droppelmann and R. E. Mennickent, “Creating Music Based on Quantitative Data from Variable Stars,” The Journal of the AAVSO., vol. 46, no. 2, p. 154, Dec. 2018.
  21. M. Rengel and M. Ockert, “Creating music from astronomical/planetary data: Herschel/pacs data sonification of haumea,” in European Planetary Science Congress 2018, 2018.
  22. A. Valle and V. Korol, “For LISA. A piano-based sonification project of gravitational waves,” arXiv e-prints, p. arXiv:2202.04621, Feb. 2022.
  23. J. Cooke, W. Díaz-Merced, G. Foran, J. Hannam, and B. Garcia, “Exploring Data Sonification to Enable, Enhance, and Accelerate the Analysis of Big, Noisy, and Multi-Dimensional Data,” in Southern Horizons in Time-Domain Astronomy, R. E. Griffin, Ed., vol. 339, Aug. 2019, pp. 251–256.
  24. B. Garcia, W. Diaz-Merced, J. Casado, and A. Cancio, “Evolving from xSonify: a new digital platform for sonorization,” in European Physical Journal Web of Conferences, ser. European Physical Journal Web of Conferences, vol. 200, July 2019, p. 01013.
  25. C. Harrison, J. Trayford, L. Harrison, and N. Bonne, “Audio universe: tour of the solar system,” Astronomy and Geophysics, vol. 63, no. 2, pp. 2.38–2.40, Apr. 2022.
  26. N. M. Batalha, W. J. Borucki, D. G. Koch, S. T. Bryson, et al., “Selection, Prioritization, and Characteristics of Kepler Target Stars,” The Astrophysical Journall, vol. 713, no. 2, pp. L109–L114, Apr. 2010.
  27. M. Bedell, “Gaia + Kepler = Fun,” website, accessed 8 Feb 2021. [Online]. Available: https://gaia-kepler.fun
  28. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, G. Mantelet, and R. Andrae, “Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2,” The Astronomical Journal, vol. 156, no. 2, p. 58, Aug. 2018.
  29. Lightkurve Collaboration, J. V. d. M. Cardoso, C. Hedges, M. Gully-Santiago, et al., “Lightkurve: Kepler and TESS time series analysis in Python,” Astrophysics Source Code Library, Dec. 2018.
  30. J. K. Cannizzo, A. P. Smale, M. A. Wood, M. D. Still, and S. B. Howell, “The Kepler Light Curves of V1504 Cygni and V344 Lyrae: A Study of the Outburst Properties,” The Astrophysical Journal, vol. 747, no. 2, p. 117, Mar. 2012.
  31. A. Dobrotka, J. U. Ness, and I. Bajčičáková, “Fast stochastic variability study of two SU UMa systems V1504 Cyg and V344 Lyr observed by Kepler satellite,” Monthly Notices of the Royal Astronomical Society, vol. 460, no. 1, pp. 458–466, July 2016.
  32. L. Gizon, T. Sekii, M. Takata, D. W. Kurtz, et al., “Shape of a slowly rotating star measured by asteroseismology,” Science Advances, vol. 2, no. 11, pp. e1 601 777–e1 601 777, Nov. 2016.
  33. E. Plachy, J. M. Benkő, Z. Kolláth, L. Molnár, and R. Szabó, “Non-linear dynamical analysis of the Blazhko effect with the Kepler space telescope: the case of V783 Cyg,” Monthly Notices of the Royal Astronomical Society, vol. 445, no. 3, pp. 2810–2817, Dec. 2014.
  34. D. Schwarz, G. Beller, B. Verbrugghe, and S. Britton, “Real-time corpus-based concatenative synthesis with catart,” in 9th International Conference on Digital Audio Effects (DAFx), Montreal, Canada, 2006, pp. 279–282.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com