Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds on the minimum distance of locally recoverable codes (2401.00418v1)

Published 31 Dec 2023 in math.CO and cs.DM

Abstract: We consider locally recoverable codes (LRCs) and aim to determine the smallest possible length $n=n_q(k,d,r)$ of a linear $[n,k,d]_q$-code with locality $r$. For $k\le 7$ we exactly determine all values of $n_2(k,d,2)$ and for $k\le 6$ we exactly determine all values of $n_2(k,d,1)$. For the ternary field we also state a few numerical results. As a general result we prove that $n_q(k,d,r)$ equals the Griesmer bound if the minimum Hamming distance $d$ is sufficiently large and all other parameters are fixed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Combinatorial alphabet-dependent bounds for locally recoverable codes. IEEE Transactions on Information Theory, 64(5):3481–3492, 2018.
  2. XORing elephants: Novel erasure codes for big data. Proceedings of the VLDB Endowment, 6(5):325–336, 2013.
  3. Computer classification of linear codes. IEEE Transactions on Information Theory, 67(12):7807–7814, 2021.
  4. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993). URL: http://dx.doi.org/10.1006/jsco.1996.0125, doi:10.1006/jsco.1996.0125.
  5. A family of 2222-weight codes related to BCH-codes. Journal of Combinatorial Designs, 5(5):391–396, 1997.
  6. Optimal binary linear codes of dimension at most seven. Discrete Mathematics, 226(1-3):51–70, 2001.
  7. The smallest length of eight-dimensional binary linear codes with prescribed minimum distance. IEEE Transactions on Information Theory, 46(4):1539–1544, 2000.
  8. A note on the Griesmer bound. IEEE Transactions on Information Theory, pages 134–135, 1973.
  9. On the maximally recoverable property for multi-protection group codes. In 2007 IEEE International Symposium on Information Theory, pages 486–490. IEEE, 2007.
  10. Bounds on the size of locally recoverable codes. IEEE Transactions on Information Theory, 61(11):5787–5794, 2015.
  11. Binary cyclic codes that are locally repairable. In 2014 IEEE International Symposium on Information Theory, pages 676–680. IEEE, 2014.
  12. On binary matroid minors and applications to data storage over small fields. In International Castle Meeting on Coding Theory and Applications, pages 139–153. Springer, 2017.
  13. Alphabet-dependent bounds for linear locally repairable codes based on residual codes. IEEE Transactions on Information Theory, 65(10):6089–6100, 2019.
  14. On the locality of codeword symbols. IEEE Transactions on Information Theory, 58(11):6925–6934, 2012.
  15. LRCs: Duality, LP bounds, and field size. arXiv preprint 2309.03676, 2023.
  16. James H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development, 4(5):532–542, 1960.
  17. Uniform minors in maximally recoverable codes. IEEE Communications Letters, 23(8):1297–1300, 2019.
  18. Tor Helleseth. New constructions of codes meeting the Griesmer bound. IEEE Transactions on Information Theory, 29(3):434–439, 1983.
  19. Erasure coding in windows azure storage. In Proceedings of the 2012 USENIX conference on Annual Technical Conference, pages 15–26, 2012.
  20. Some results on optimal locally repairable codes. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 440–444. IEEE, 2016.
  21. On optimal ternary locally repairable codes. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 171–175. IEEE, 2017.
  22. Bounds and constructions of locally repairable codes: parity-check matrix approach. IEEE Transactions on Information Theory, 66(12):7465–7474, 2020.
  23. Cyclic linear binary locally repairable codes. In 2015 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE, 2015.
  24. Binary linear locally repairable codes. IEEE Transactions on Information Theory, 62(11):6268–6283, 2016.
  25. PIR codes with short block length. Designs, Codes and Cryptography, 89:559–587, 2021.
  26. Optimal locally repairable codes of distance 3333 and 4444 via cyclic codes. IEEE Transactions on Information Theory, 65(2):1048–1053, 2018.
  27. Tatsuya Maruta. On the achievement of the griesmer bound. Designs, Codes and Cryptography, 12:83–87, 1997.
  28. Optimal linear codes with a local-error-correction property. In 2012 IEEE International Symposium on Information Theory Proceedings, pages 2776–2780. IEEE, 2012.
  29. Algebraically punctured cyclic codes. Information and Control, 8(2):170–179, 1965.
  30. A family of optimal locally recoverable codes. IEEE Transactions on Information Theory, 60(8):4661–4676, 2014.
  31. Cyclic LRC codes and their subfield subcodes. In 2015 IEEE International Symposium on Information Theory (ISIT), pages 1262–1266. IEEE, 2015.
  32. Optimal locally repairable codes and connections to matroid theory. IEEE Transactions on Information Theory, 62(12):6661–6671, 2016.
  33. Henk C.A. van Tilborg. The smallest length of binary 7777–dimensional linear codes with prescribed minimum distance. Discrete Mathematics, 33(2):197–207, 1981.
  34. On the combinatorics of locally repairable codes via matroid theory. IEEE Transactions on Information Theory, 62(10):5296–5315, 2016.
  35. Optimal quaternary locally repairable codes attaining the Singleton-like bound. arXiv preprint 2206.05805, 2022.

Summary

We haven't generated a summary for this paper yet.