Canonical analysis of the gravitational description of the $T\bar{T}$ deformation (2401.00068v1)
Abstract: The description of the $T\bar{T}$ deformation in terms of two-dimensional gravity is analyzed from the Hamiltonian point of view, in a manner analogous to the ADM description of general relativity. We find that the Hamiltonian constraints of the theory imply relations between target-space momentum at finite volume which are equivalent to the $T\bar{T}$ finite volume flow equations. This fully-quantum $T\bar{T}$ result emerges already at the classical level within the gravitational theory. We exemplify the analysis for the case when the undeformed sector is a collection of $D-2$ free massless scalars, where it is shown that -- somewhat non-trivially -- the target-space two-dimensional Poincar\'e symmetry is extended to $D$ dimensions. The connection between canonical quantization of this constrained Hamiltonian system and previous path integral quantizations is also discussed. We extend our analysis to the ``gravitational'' description of $J\bar{T}$-type deformations, where it is found that the flow equations obtained involve deformations that twist the spatial boundary conditions.
- F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B 915 (2017) 363–383, 1608.05499.
- A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10 (2016) 112, 1608.05534.
- S. Dubovsky, V. Gorbenko, and M. Mirbabayi, “Asymptotic fragility, near AdS 2 holography and TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG,” Journal of High Energy Physics 2017 (2017), no. 9, 1–37.
- S. Dubovsky, V. Gorbenko, and G. Hernández-Chifflet, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG partition function from topological gravity,” Journal of High Energy Physics 2018 (2018), no. 9, 1–23.
- E. A. Mazenc, V. Shyam, and R. M. Soni, “A TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformation for Curved Spacetimes from 3d Gravity,” 1912.09179.
- R. L. Arnowitt, S. Deser, and C. W. Misner, “The Dynamics of general relativity,” Gen. Rel. Grav. 40 (2008) 1997–2027, gr-qc/0405109.
- Cambridge University Press, 12, 2010.
- A. J. Tolley, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations, massive gravity and non-critical strings,” JHEP 06 (2020) 050, 1911.06142.
- C. Itzykson and J. B. Zuber, Quantum Field Theory. International Series In Pure and Applied Physics. McGraw-Hill, New York, 1980.
- S. Weinberg, The quantum theory of fields. Cambridge university press, 1995.
- C. T. Marc Henneaux, Quantization of gauge systems. Princeton University press, 1991.
- E. Witten, “Open Strings On The Rindler Horizon,” JHEP 01 (2019) 126, 1810.11912.
- L. Brink and M. Henneaux, PRINCIPLES OF STRING THEORY. 1988.
- R. Jackiw, “Two lectures on two-dimensional gravity,” arXiv preprint gr-qc/9511048 (1995).
- C. Rovelli, Quantum gravity. Cambridge university press, 2004.
- T. Thiemann, Modern canonical quantum general relativity. Cambridge University Press, 2008.
- R. Conti, L. Iannella, S. Negro, and R. Tateo, “Generalised Born-Infeld models, Lax operators and the TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation,” JHEP 11 (2018) 007, 1806.11515.
- S. Dubovsky, R. Flauger, and V. Gorbenko, “Solving the Simplest Theory of Quantum Gravity,” JHEP 09 (2012) 133, 1205.6805.
- N. Callebaut, J. Kruthoff, and H. Verlinde, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT as a non-critical string,” JHEP 04 (2020) 084, 1910.13578.
- S. Frolov, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation and the Light-Cone Gauge,” Proc. Steklov Inst. Math. 309 (2020) 107–126, 1905.07946.
- A. Ireland and V. Shyam, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed YM22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT on general backgrounds from an integral transformation,” JHEP 07 (2020) 058, 1912.04686.
- L. Griguolo, R. Panerai, J. Papalini, and D. Seminara, “Exact TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of two-dimensional Yang-Mills theory on the sphere,” JHEP 10 (2022) 134, 2207.05095.
- L. Griguolo, R. Panerai, J. Papalini, and D. Seminara, “The phase diagram of TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed Yang-Mills theory on the sphere,” JHEP 11 (2022) 078, 2209.06222.
- L. Santilli and M. Tierz, “Large N phase transition in TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG -deformed 2d Yang-Mills theory on the sphere,” JHEP 01 (2019) 054, 1810.05404.
- V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50 (1994) 846–864, gr-qc/9403028.
- M. Guica, “An integrable Lorentz-breaking deformation of two-dimensional CFTs,” SciPost Phys. 5 (2018), no. 5, 048, 1710.08415.
- A. Bzowski and M. Guica, “The holographic interpretation of JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 01 (2019) 198, 1803.09753.
- S. Chakraborty, A. Giveon, and D. Kutasov, “JT¯𝐽¯𝑇J\overline{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and string theory,” JHEP 10 (2018) 057, 1806.09667.
- O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular covariance and uniqueness of JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFTs,” JHEP 01 (2019) 085, 1808.08978.
- L. Apolo and W. Song, “Strings on warped AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT via TJ¯T¯J\mathrm{T}\bar{\mathrm{J}}roman_T over¯ start_ARG roman_J end_ARG deformations,” JHEP 10 (2018) 165, 1806.10127.
- J. Aguilera-Damia, V. I. Giraldo-Rivera, E. A. Mazenc, I. Salazar Landea, and R. M. Soni, “A path integral realization of joint JT¯𝐽¯𝑇J\overline{T}italic_J over¯ start_ARG italic_T end_ARG, TJ¯𝑇¯𝐽T\overline{J}italic_T over¯ start_ARG italic_J end_ARG and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG flows,” JHEP 07 (2020), no. 07, 085, 1910.06675.
- G. Hernández-Chifflet, S. Negro, and A. Sfondrini, “Flow Equations for Generalized TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformations,” Phys. Rev. Lett. 124 (2020), no. 20, 200601, 1911.12233.
- J. Polchinski, “Evaluation of the One Loop String Path Integral,” Commun. Math. Phys. 104 (1986) 37.
- E. D’Hoker and D. H. Phong, “The Geometry of String Perturbation Theory,” Rev. Mod. Phys. 60 (1988) 917.
- E. Witten, “A Note On The Canonical Formalism for Gravity,” 2212.08270.
- J. B. Hartle and K. V. Kuchar, “Path integrals in parametrized theories: The Free relativistic particle,” Phys. Rev. D 34 (1986) 2323–2331.
- A. G. Cohen, G. W. Moore, P. C. Nelson, and J. Polchinski, “An Off-Shell Propagator for String Theory,” Nucl. Phys. B 267 (1986) 143–157.