Persistent gravitational wave observables: Nonlinearities in (non-)geodesic deviation (2401.00047v3)
Abstract: The usual gravitational wave memory effect can be understood as a change in the separation of two initially comoving observers due to a burst of gravitational waves. Over the past few decades, a wide variety of other, "persistent" observables which measure permanent effects on idealized detectors have been introduced, each probing distinct physical effects. These observables can be defined in (regions of) any spacetime where there exists a notion of radiation, such as perturbation theory off of a fixed background, nonlinear plane wave spacetimes, or asymptotically flat spacetimes. Many of the persistent observables defined in the literature have only been considered in asymptotically flat spacetimes, and the perturbative nature of such calculations has occasionally obscured deeper relationships between these observables that hold more generally. The goal of this paper is to show how these more general results arise, and to do so we focus on two observables related to the separation between two, potentially accelerated observers. The first is the curve deviation, which is a natural generalization of the displacement memory, and also contains what this paper proposes to call drift memory (previously called "subleading displacement memory") and ballistic memory. The second is a relative proper time shift that arises between the two observers, either at second order in their initial separation and relative velocity, or in the presence of relative acceleration. The results of this paper are, where appropriate, entirely non-perturbative in the curvature of spacetime, and so could be used beyond leading order in asymptotically flat spacetimes.
- E. E. Flanagan, A. M. Grant, A. I. Harte, and D. A. Nichols, “Persistent gravitational wave observables: general framework,” Phys. Rev. D 99 no. 8, (2019) 084044, arXiv:1901.00021 [gr-qc].
- E. E. Flanagan, A. M. Grant, A. I. Harte, and D. A. Nichols, “Persistent gravitational wave observables: Nonlinear plane wave spacetimes,” Phys. Rev. D 101 no. 10, (2020) 104033, arXiv:1912.13449 [gr-qc].
- A. M. Grant and D. A. Nichols, “Persistent gravitational wave observables: Curve deviation in asymptotically flat spacetimes,” Phys. Rev. D 105 no. 2, (2022) 024056, arXiv:2109.03832 [gr-qc]. [Erratum: Phys.Rev.D 107, 109902 (2023)].
- E. G. Bessonov, “On a Class of Electromagnetic Waves,” Sov. Phys. JETP 53 (1981) 433–436.
- L. Bieri and D. Garfinkle, “An electromagnetic analogue of gravitational wave memory,” Classical Quantum Gravity 30 (2013) 195009, arXiv:1307.5098 [gr-qc].
- S. Pasterski, “Asymptotic Symmetries and Electromagnetic Memory,” J. High Energy Phys. 09 (2017) 154, arXiv:1505.00716 [hep-th].
- M. Pate, A.-M. Raclariu, and A. Strominger, “Color Memory: A Yang-Mills Analog of Gravitational Wave Memory,” Phys. Rev. Lett. 119 no. 26, (2017) 261602, arXiv:1707.08016 [hep-th].
- C. Ferko, G. Satishchandran, and S. Sethi, “Gravitational memory and compact extra dimensions,” Phys. Rev. D 105 no. 2, (2022) 024072, arXiv:2109.11599 [gr-qc].
- D. Garfinkle, “Gravitational wave memory and the wave equation,” Class. Quant. Grav. 39 no. 13, (2022) 135010, arXiv:2201.05543 [gr-qc].
- B. Oblak and A. Seraj, “Orientation Memory of Magnetic Dipoles,” arXiv:2304.12348 [hep-th].
- A. Pérez, S. Prohazka, and A. Seraj, “Fracton infrared triangle,” arXiv:2310.16683 [hep-th].
- M. M. Sheikh-Jabbari, V. Taghiloo, and M. H. Vahidinia, “Shallow Water Memory: Stokes and Darwin Drifts,” SciPost Phys. 15 (2023) 115, arXiv:2302.04912 [hep-th].
- L. P. Grishchuk and A. G. Polnarev, “Gravitational wave pulses with ‘velocity coded memory.”’ Sov. Phys. JETP 69 (1989) 653–657.
- A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” arXiv:1411.5745 [hep-th].
- É. É. Flanagan and D. A. Nichols, “Observer dependence of angular momentum in general relativity and its relationship to the gravitational-wave memory effect,” Phys. Rev. D 92 no. 8, (2015) 084057, arXiv:1411.4599 [gr-qc].
- S. Pasterski, A. Strominger, and A. Zhiboedov, “New Gravitational Memories,” arXiv:1502.06120 [hep-th].
- D. A. Nichols, “Spin memory effect for compact binaries in the post-Newtonian approximation,” Phys. Rev. D95 no. 8, (2017) 084048, arXiv:1702.03300 [gr-qc].
- D. A. Nichols, “Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes,” Phys. Rev. D 98 no. 6, (2018) 064032, arXiv:1807.08767 [gr-qc].
- Y. B. Zel’dovich and A. G. Polnarev, “Radiation of gravitational waves by a cluster of superdense stars,” Sov. Astron. 18 (Aug., 1974) 17.
- K. S. Thorne, “Gravitational-wave bursts with memory: The christodoulou effect,” Phys. Rev. D 45 (Jan, 1992) 520–524. http://link.aps.org/doi/10.1103/PhysRevD.45.520.
- L. Bieri and D. Garfinkle, “Perturbative and gauge invariant treatment of gravitational wave memory,” Phys. Rev. D 89 (Apr, 2014) 084039, arXiv:1312.6871 [gr-qc]. http://link.aps.org/doi/10.1103/PhysRevD.89.084039.
- L. Bieri, D. Garfinkle, and S.-T. Yau, “Gravitational wave memory in de Sitter spacetime,” Phys. Rev. D 94 no. 6, (2016) 064040, arXiv:1509.01296 [gr-qc].
- A. Tolish and R. M. Wald, “Cosmological memory effect,” Phys. Rev. D 94 no. 4, (2016) 044009, arXiv:1606.04894 [gr-qc].
- N. Jokela, K. Kajantie, and M. Sarkkinen, “Gravitational wave memory and its tail in cosmology,” Phys. Rev. D 106 no. 6, (2022) 064022, arXiv:2204.06981 [gr-qc].
- A. I. Harte, “Optics in a nonlinear gravitational plane wave,” Classical Quantum Gravity 32 no. 17, (2015) 175017, arXiv:1502.03658 [gr-qc].
- P.-M. Zhang, C. Duval, G. W. Gibbons, and P. A. Horvathy, “The Memory Effect for Plane Gravitational Waves,” Phys. Lett. B 772 (2017) 743–746, arXiv:1704.05997 [gr-qc].
- P.-M. Zhang, C. Duval, G. W. Gibbons, and P. A. Horvathy, “Soft gravitons and the memory effect for plane gravitational waves,” Phys. Rev. D 96 no. 6, (2017) 064013, arXiv:1705.01378 [gr-qc].
- D. Christodoulou, “Nonlinear nature of gravitation and gravitational-wave experiments,” Phys. Rev. Lett. 67 (Sep, 1991) 1486–1489. http://link.aps.org/doi/10.1103/PhysRevLett.67.1486.
- A. Strominger, “On BMS invariance of gravitational scattering,” J. High Energy Phys. 7 (July, 2014) 152, arXiv:1312.2229 [hep-th].
- I. Chakraborty and S. Kar, “Memory effects in Kundt wave spacetimes,” Phys. Lett. B 808 (2020) 135611, arXiv:2005.00245 [gr-qc].
- A. Seraj, “Gravitational breathing memory and dual symmetries,” JHEP 05 (2021) 283, arXiv:2103.12185 [hep-th].
- A. K. Divakarla and B. F. Whiting, “First-order velocity memory effect from compact binary coalescing sources,” Phys. Rev. D 104 no. 6, (2021) 064001, arXiv:2106.05163 [gr-qc].
- A. Seraj and B. Oblak, “Gyroscopic gravitational memory,” JHEP 11 (2023) 057, arXiv:2112.04535 [hep-th].
- A. Seraj and B. Oblak, “Precession Caused by Gravitational Waves,” Phys. Rev. Lett. 129 no. 6, (2022) 061101, arXiv:2203.16216 [gr-qc].
- A. Seraj and T. Neogi, “Memory effects from holonomies,” Phys. Rev. D 107 no. 10, (2023) 104034, arXiv:2206.14110 [hep-th].
- A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
- P. D. Lasky, E. Thrane, Y. Levin, J. Blackman, and Y. Chen, “Detecting gravitational-wave memory with LIGO: implications of GW150914,” Phys. Rev. Lett. 117 no. 6, (2016) 061102, arXiv:1605.01415 [astro-ph.HE].
- A. M. Grant and D. A. Nichols, “Outlook for detecting the gravitational-wave displacement and spin memory effects with current and future gravitational-wave detectors,” Phys. Rev. D 107 no. 6, (2023) 064056, arXiv:2210.16266 [gr-qc]. [Erratum: Phys.Rev.D 108, 029901 (2023)].
- J. Vines, “Geodesic deviation at higher orders via covariant bitensors,” Gen. Relativ. Gravit. 47 no. 5, (2015) 59, arXiv:1407.6992 [gr-qc].
- R. M. Wald, General Relativity. U. Chicago Press, Chicago, 1984.
- E. Poisson, A. Pound, and I. Vega, “The Motion of point particles in curved spacetime,” Living Rev. Rel. 14 (2011) 7, arXiv:1102.0529 [gr-qc].
- J. Vines and D. A. Nichols, “Properties of an affine transport equation and its holonomy,” Gen. Relativ. Gravit. 48 no. 10, (2016) 127, arXiv:1412.4077 [gr-qc].
- Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1987.
- J. Synge, Relativity: The General Theory. North-Holland series in physics. North-Holland Publishing Company, 1960.
- W. G. Dixon, “Extended bodies in general relativity: their description and motion,” in Isolated Gravitating Systems in General Relativity, J. Ehlers, ed., pp. 156–219. North-Holland, Amsterdam, January, 1979.
- A. M. Grant, Angular Momentum in General Relativity. PhD thesis, Cornell University, August, 2020.
- É. É. Flanagan, D. A. Nichols, L. C. Stein, and J. Vines, “Prescriptions for measuring and transporting local angular momenta in general relativity,” Phys. Rev. D 93 no. 10, (2016) 104007, arXiv:1602.01847 [gr-qc].
- A. I. Harte and T. D. Drivas, “Caustics and wave propagation in curved spacetimes,” Phys. Rev. D 85 (2012) 124039, arXiv:1202.0540 [gr-qc].
- N. Uzun, “Reduced phase space optics for general relativity: Symplectic ray bundle transfer,” arXiv:1811.10917 [gr-qc].
- M. Grasso, M. Korzyński, and J. Serbenta, “Geometric optics in general relativity using bilocal operators,” Phys. Rev. D 99 no. 6, (2019) 064038, arXiv:1811.10284 [gr-qc].
- A. I. Harte, “Strong lensing, plane gravitational waves and transient flashes,” Classical Quantum Gravity 30 (2013) 075011, arXiv:1210.1449 [gr-qc].
- I. M. H. Etherington, “On the Definition of Distance in General Relativity.,” Philosophical Magazine 15 no. 18, (Jan., 1933) 761.
- V. Perlick, “Gravitational lensing from a spacetime perspective,” Living Rev. Rel. 7 (2004) 9, arXiv:1010.3416 [gr-qc].
- S. Siddhant, A. M. Grant, and D. A. Nichols, “Higher memory effects and the post-Newtonian calculation of their gravitational-wave signals,” arXiv:2403.13907 [gr-qc].
- K. Mitman, J. Moxon, M. A. Scheel, S. A. Teukolsky, M. Boyle, N. Deppe, L. E. Kidder, and W. Throwe, “Computation of displacement and spin gravitational memory in numerical relativity,” Phys. Rev. D 102 no. 10, (2020) 104007, arXiv:2007.11562 [gr-qc].
- A. M. Grant and K. Mitman, “Higher Memory Effects in Numerical Simulations of Binary Black Hole Mergers,” arXiv:2312.02295 [gr-qc].
- M. do Carmo, Riemannian Geometry. Mathematics (Birkhäuser) theory. Birkhäuser Boston, 1992.
- H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems,” Proc. R. Soc. Lond. A 269 (Aug., 1962) 21–52.
- R. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev. 128 (Dec, 1962) 2851–2864. http://link.aps.org/doi/10.1103/PhysRev.128.2851.
- R. P. Geroch, “Asymptotic Structure of Space-Time,” in Asymptotic Structure of Space-Time, Esposito, F. P. and Witten, L., ed., pp. 1–105. Plenum Press, New York, 1977.
- A. I. Harte, “Motion in classical field theories and the foundations of the self-force problem,” Fund. Theor. Phys. 179 (2015) 327–398, arXiv:1405.5077 [gr-qc].
- R. M. Floyd, The dynamics of Kerr fields. PhD thesis, University of London, January, 1974.
- Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1988.