On the 4d/3d/2d view of the SCFT/VOA correspondence (2312.17747v2)
Abstract: We start with the SCFT/VOA correspondence formulated in the Omega-background approach, and connect it to the boundary VOA in 3d $\mathcal{N}=4$ theories and chiral algebras of 2d $\mathcal{N}=(0,2)$ theories. This is done using the dimensional reduction of the 4d theory on the topologically twisted and Omega-deformed cigar, performed in two steps. This paves the way for many more interesting questions, and we offer quite a few. We also use this approach to explain some older observations on the TQFTs produced from the generalized Argyres-Douglas (AD) theories reduced on the circle with a discrete twist. In particular, we argue that many AD theories with trivial Higgs branch, upon reduction on $S1$ with the $\mathbb{Z}_N$ twist (where $\mathbb{Z}_N$ is a global symmetry of the given AD theory), result in the rank-0 3d $\mathcal{N}=4$ SCFTs, which have been a subject of recent studies. A generic AD theory, by the same logic, leads to a 3d $\mathcal{N}=4$ SCFT with zero-dimensional Coulomb branch (and suggests that there are a lot of them). Our construction therefore puts various empirical observations on the firm ground, such as, among other things, the match between the 4d VOA and the boundary VOA for some 3d rank-0 SCFTs previously observed in the literature. We end with an extensive list of promising open problems.
- N. Nekrasov and E. Witten, “The Omega Deformation, Branes, Integrability, and Liouville Theory,” JHEP 09 (2010) 092, arXiv:1002.0888 [hep-th].
- C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B. C. van Rees, “Infinite Chiral Symmetry in Four Dimensions,” Commun. Math. Phys. 336 no. 3, (2015) 1359–1433, arXiv:1312.5344 [hep-th].
- N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor. Math. Phys. 7 no. 5, (2003) 831–864, arXiv:hep-th/0206161.
- N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random partitions,” Prog. Math. 244 (2006) 525–596, arXiv:hep-th/0306238.
- A. Kapustin, “Holomorphic reduction of N=2 gauge theories, Wilson-’t Hooft operators, and S-duality,” arXiv:hep-th/0612119.
- J. Oh and J. Yagi, “Chiral algebras from ΩΩ\Omegaroman_Ω-deformation,” JHEP 08 (2019) 143, arXiv:1903.11123 [hep-th].
- S. Jeong, “SCFT/VOA correspondence via ΩΩ\Omegaroman_Ω-deformation,” JHEP 10 (2019) 171, arXiv:1904.00927 [hep-th].
- D. Butson.
- J. Oh and J. Yagi, “Poisson vertex algebras in supersymmetric field theories,” Lett. Math. Phys. 110 no. 8, (2020) 2245–2275, arXiv:1908.05791 [hep-th].
- C. Beem, L. Rastelli, and B. C. van Rees, “𝒲𝒲\mathcal{W}caligraphic_W symmetry in six dimensions,” JHEP 05 (2015) 017, arXiv:1404.1079 [hep-th].
- N. Bobev, P. Bomans, and F. F. Gautason, “Comments on chiral algebras and ΩΩ\Omegaroman_Ω-deformations,” JHEP 04 (2021) 132, arXiv:2010.02267 [hep-th].
- D. Gaiotto, “Twisted compactifications of 3d 𝒩𝒩\mathcal{N}caligraphic_N = 4 theories and conformal blocks,” JHEP 02 (2019) 061, arXiv:1611.01528 [hep-th].
- K. Costello and D. Gaiotto, “Vertex Operator Algebras and 3d 𝒩𝒩\mathcal{N}caligraphic_N = 4 gauge theories,” JHEP 05 (2019) 018, arXiv:1804.06460 [hep-th].
- M. Blau and G. Thompson, “Aspects of N(T) >>>= two topological gauge theories and D-branes,” Nucl. Phys. B 492 (1997) 545–590, arXiv:hep-th/9612143.
- L. Rozansky and E. Witten, “HyperKahler geometry and invariants of three manifolds,” Selecta Math. 3 (1997) 401–458, arXiv:hep-th/9612216.
- A. Kapustin and K. Vyas, “A-Models in Three and Four Dimensions,” arXiv:1002.4241 [hep-th].
- E. Witten, “Topological Quantum Field Theory,” Commun. Math. Phys. 117 (1988) 353.
- E. Witten, “On the Landau-Ginzburg description of N=2 minimal models,” Int. J. Mod. Phys. A 9 (1994) 4783–4800, arXiv:hep-th/9304026.
- E. Silverstein and E. Witten, “Global U(1) R symmetry and conformal invariance of (0,2) models,” Phys. Lett. B 328 (1994) 307–311, arXiv:hep-th/9403054.
- M. Dedushenko, “Chiral algebras in Landau-Ginzburg models,” JHEP 03 (2018) 079, arXiv:1511.04372 [hep-th].
- M. Dedushenko and S. Gukov, “IR duality in 2D N=(0,2)𝑁02N=(0,2)italic_N = ( 0 , 2 ) gauge theory with noncompact dynamics,” Phys. Rev. D 99 no. 6, (2019) 066005, arXiv:1712.07659 [hep-th].
- M. Dedushenko, S. Gukov, H. Nakajima, D. Pei, and K. Ye, “3d TQFTs from Argyres–Douglas theories,” J. Phys. A 53 no. 43, (2020) 43LT01, arXiv:1809.04638 [hep-th].
- L. Fredrickson, D. Pei, W. Yan, and K. Ye, “Argyres-Douglas Theories, Chiral Algebras and Wild Hitchin Characters,” JHEP 01 (2018) 150, arXiv:1701.08782 [hep-th].
- L. Fredrickson and A. Neitzke, “From S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-fixed points to 𝒲𝒲\mathcal{W}caligraphic_W-algebra representations,” arXiv:1709.06142 [math.DG].
- P. C. Argyres and M. R. Douglas, “New phenomena in SU(3) supersymmetric gauge theory,” Nucl. Phys. B 448 (1995) 93–126, arXiv:hep-th/9505062.
- P. C. Argyres, M. R. Plesser, N. Seiberg, and E. Witten, “New N=2 superconformal field theories in four-dimensions,” Nucl. Phys. B 461 (1996) 71–84, arXiv:hep-th/9511154.
- D. Xie, “General Argyres-Douglas Theory,” JHEP 01 (2013) 100, arXiv:1204.2270 [hep-th].
- D. Gang and M. Yamazaki, “Three-dimensional gauge theories with supersymmetry enhancement,” Phys. Rev. D 98 no. 12, (2018) 121701, arXiv:1806.07714 [hep-th].
- D. Gang, S. Kim, K. Lee, M. Shim, and M. Yamazaki, “Non-unitary TQFTs from 3D 𝒩𝒩\mathcal{N}caligraphic_N = 4 rank 0 SCFTs,” JHEP 08 (2021) 158, arXiv:2103.09283 [hep-th].
- D. Gang, H. Kim, and S. Stubbs, “Three-Dimensional Topological Field Theories and Non-Unitary Minimal Models,” arXiv:2310.09080 [hep-th].
- A. E. V. Ferrari, N. Garner, and H. Kim, “Boundary vertex algebras for 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 rank-0 SCFTs,” arXiv:2311.05087 [hep-th].
- P. Argyres and M. Martone, “Construction and classification of Coulomb branch geometries,” arXiv:2003.04954 [hep-th].
- J. Yagi, “ΩΩ\Omegaroman_Ω-deformation and quantization,” JHEP 08 (2014) 112, arXiv:1405.6714 [hep-th].
- Y. Luo, M.-C. Tan, J. Yagi, and Q. Zhao, “ΩΩ\Omegaroman_Ω-deformation of B-twisted gauge theories and the 3d-3d correspondence,” JHEP 02 (2015) 047, arXiv:1410.1538 [hep-th].
- S. Nawata, Y. Pan, and J. Zheng, “Class 𝒮𝒮\mathcal{S}caligraphic_S on S2superscript𝑆2S^{2}italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,” arXiv:2310.07965 [hep-th].
- K. Costello, T. Dimofte, and D. Gaiotto, “Boundary Chiral Algebras and Holomorphic Twists,” Commun. Math. Phys. 399 no. 2, (2023) 1203–1290, arXiv:2005.00083 [hep-th].
- D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in N=4 Super Yang-Mills Theory,” J. Statist. Phys. 135 (2009) 789–855, arXiv:0804.2902 [hep-th].
- M. Bullimore, T. Dimofte, D. Gaiotto, and J. Hilburn, “Boundaries, Mirror Symmetry, and Symplectic Duality in 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Gauge Theory,” JHEP 10 (2016) 108, arXiv:1603.08382 [hep-th].
- K. Costello and J. Yagi, “Unification of integrability in supersymmetric gauge theories,” Adv. Theor. Math. Phys. 24 no. 8, (2020) 1931–2041, arXiv:1810.01970 [hep-th].
- E. Witten, “A New Look At The Path Integral Of Quantum Mechanics,” arXiv:1009.6032 [hep-th].
- M. F. Sohnius, “The Multiplet of Currents for N=2𝑁2N=2italic_N = 2 Extended Supersymmetry,” Phys. Lett. B 81 (1979) 8–10.
- S. Cecotti and C. Vafa, “Topological antitopological fusion,” Nucl. Phys. B 367 (1991) 359–461.
- N. Garner, “Twisted Formalism for 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Theories,” arXiv:2204.02997 [hep-th].
- T. Dimofte, D. Gaiotto, and N. M. Paquette, “Dual boundary conditions in 3d SCFT’s,” JHEP 05 (2018) 060, arXiv:1712.07654 [hep-th].
- L. Alvarez-Gaume and E. Witten, “Gravitational Anomalies,” Nucl. Phys. B 234 (1984) 269.
- E. A. Bergshoeff, O. Hohm, J. Rosseel, and P. K. Townsend, “On Maximal Massive 3D Supergravity,” Class. Quant. Grav. 27 (2010) 235012, arXiv:1007.4075 [hep-th].
- M. Del Zotto and A. Hanany, “Complete Graphs, Hilbert Series, and the Higgs branch of the 4d 𝒩=𝒩absent\mathcal{N}=caligraphic_N = 2 (An,Am)subscript𝐴𝑛subscript𝐴𝑚(A_{n},A_{m})( italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_A start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) SCFTs,” Nucl. Phys. B 894 (2015) 439–455, arXiv:1403.6523 [hep-th].
- C. Cordova and S.-H. Shao, “Schur Indices, BPS Particles, and Argyres-Douglas Theories,” JHEP 01 (2016) 040, arXiv:1506.00265 [hep-th].
- C. Beem and L. Rastelli, “Vertex operator algebras, Higgs branches, and modular differential equations,” JHEP 08 (2018) 114, arXiv:1707.07679 [hep-th].
- N. A. Nekrasov and S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz,” Nucl. Phys. B Proc. Suppl. 192-193 (2009) 91–112, arXiv:0901.4744 [hep-th].
- N. A. Nekrasov and S. L. Shatashvili, “Bethe/Gauge correspondence on curved spaces,” JHEP 01 (2015) 100, arXiv:1405.6046 [hep-th].
- C. Closset, H. Kim, and B. Willett, “Supersymmetric partition functions and the three-dimensional A-twist,” JHEP 03 (2017) 074, arXiv:1701.03171 [hep-th].
- C. Closset, H. Kim, and B. Willett, “Seifert fibering operators in 3d 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 theories,” JHEP 11 (2018) 004, arXiv:1807.02328 [hep-th].
- M. Dedushenko and M. Litvinov, “Supersymmetric reduction of 3D theories on a line segment,” Phys. Rev. D 108 no. 4, (2023) 045016, arXiv:2212.07455 [hep-th].
- S. Alekseev, M. Dedushenko, and M. Litvinov, “Chiral life on a slab,” arXiv:2301.00038 [hep-th].
- P. Longhi, F. Nieri, and A. Pittelli, “Localization of 4d 𝒩=1𝒩1\mathcal{N}=1caligraphic_N = 1 theories on 𝔻2×𝕋2superscript𝔻2superscript𝕋2\mathbb{D}^{2}\times\mathbb{T}^{2}blackboard_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × blackboard_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,” JHEP 12 (2019) 147, arXiv:1906.02051 [hep-th].
- P. Shan, D. Xie, and W. Yan, “Mirror symmetry for circle compactified 4d 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 SCFTs,” arXiv:2306.15214 [hep-th].