Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry Breaking in an Extended O(2) Model (2312.17739v2)

Published 29 Dec 2023 in hep-lat, cond-mat.stat-mech, and physics.comp-ph

Abstract: Motivated by attempts to quantum simulate lattice models with continuous Abelian symmetries using discrete approximations, we study an extended-O(2) model in two dimensions that differs from the ordinary O(2) model by the addition of an explicit symmetry breaking term $-h_q\cos(q\varphi)$. Its coupling $h_q$ allows to smoothly interpolate between the O(2) model ($h_q=0$) and a $q$-state clock model ($h_q\rightarrow\infty$). In the latter case, a $q$-state clock model can also be defined for noninteger values of $q$. Thus, such a limit can also be considered as an analytic continuation of an ordinary $q$-state clock model to noninteger $q$. In previous work, we established the phase diagram for noninteger $q$ in the infinite coupling limit ($h_q\rightarrow\infty$). We showed that there is a second-order phase transition at low temperature and a crossover at high temperature. In this work, we seek to establish the phase diagram at finite values of the coupling using Monte Carlo and tensor methods. We show that for noninteger $q$, the second-order phase transition at low temperature and crossover at high temperature persist to finite coupling. For integer $q=2,3,4$, we know there is a second-order phase transition at infinite coupling (i.e. the well-known clock models). At finite coupling, we find that the critical exponents for $q=3,4$ vary with the coupling, and for $q=4$ the transition may turn into a BKT transition at small coupling. We comment on the similarities and differences of the phase diagrams with those of quantum simulators of the Abelian-Higgs model based on ladder-shaped arrays of Rydberg atoms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. R. P. Feynman, International Journal of Theoretical Physics 21, 467 (1982).
  2. Y. Meurice, Phys. Rev. D 100, 014506 (2019), arXiv:1903.01918 [hep-lat] .
  3. Y. Meurice, Phys. Rev. D 104, 094513 (2021).
  4. T.-L. H. Nguyen and V. T. Ngo, Advances in Natural Sciences: Nanoscience and Nanotechnology 8, 015013 (2017).
  5. D. Landau, Journal of Magnetism and Magnetic Materials 31-34, 1115 (1983).
  6. G. Hu and S. Ying, Physica A: Statistical Mechanics and its Applications 140, 585 (1987).
  7. P. Calabrese and A. Celi, Phys. Rev. B 66, 184410 (2002).
  8. A. Chlebicki and P. Jakubczyk, Phys. Rev. E 100, 052106 (2019).
  9. A. Keesling et al., Nature 568, 207 (2019), arXiv:1809.05540 [quant-ph] .
  10. M. Rader and A. M. Läuchli, “Floating phases in one-dimensional rydberg ising chains,”  (2019), arXiv:1908.02068 [cond-mat.quant-gas] .
  11. N. Chepiga and F. Mila, Phys. Rev. Lett. 122, 017205 (2019).
  12. N. Chepiga and F. Mila, Nature Communications 12, 414 (2021).
  13. R. Gupta and C. F. Baillie, Phys. Rev. B 45, 2883 (1992).
  14. P. Butera and M. Comi, Phys. Rev. B 47, 11969 (1993).
  15. P. Olsson, Phys. Rev. B 52, 4526 (1995).
  16. H. Arisue, Phys. Rev. E 79, 011107 (2009).
  17. Y. Komura and Y. Okabe, Journal of the Physical Society of Japan 81, 113001 (2012).
  18. R. G. Jha, Journal of Statistical Mechanics: Theory and Experiment 2020, 083203 (2020).
  19. J. Tobochnik, Phys. Rev. B 26, 6201 (1982).
  20. K. Kaski and J. D. Gunton, Phys. Rev. B 28, 5371 (1983).
  21. M. S. S. Challa and D. P. Landau, Journal of Applied Physics 55, 2429 (1984).
  22. M. S. S. Challa and D. P. Landau, Phys. Rev. B 33, 437 (1986).
  23. Y. Leroyer and K. Rouidi, Journal of Physics A: Mathematical and General 24, 1931 (1991).
  24. Y. Tomita and Y. Okabe, Phys. Rev. B 65, 184405 (2002).
  25. C.-O. Hwang, Phys. Rev. E 80, 042103 (2009).
  26. S. K. Baek and P. Minnhagen, Phys. Rev. E 82, 031102 (2010).
  27. K. Binder, Phys. Rev. Lett. 47, 693 (1981).
  28. A. Bazavov and B. A. Berg, Phys. Rev. D 71, 114506 (2005).
  29. Y. Kuramashi and Y. Yoshimura, JHEP 04, 089 (2020), arXiv:1911.06480 [hep-lat] .
  30. S. Morita and N. Kawashima, Computer Physics Communications 236, 65 (2019).
  31. M. Weigel and W. Janke, Phys. Rev. E 81, 066701 (2010).
  32. M. Droz and A. Malaspinas, J. Phys. C: Solid State Phys. 16, L231 (1983).
  33. N. Bartelt and T. Einstein, J. Phys. A: Math. Gen. 19, 1429 (1986).
  34. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).
  35. J. W. Essam and M. E. Fisher, The Journal of Chemical Physics 38, 802 (2004), https://pubs.aip.org/aip/jcp/article-pdf/38/4/802/8126790/802_1_online.pdf .
  36. G. S. Rushbrooke, The Journal of Chemical Physics 39, 842 (2004), https://pubs.aip.org/aip/jcp/article-pdf/39/3/842/8127677/842_2_online.pdf .
  37. B. Josephson, Proceedings of the Physical Society 92, 276 (1967).
  38. M. E. Fisher, Reports on Progress in Physics 30, 615 (1967).
  39. A. D. Sokal, Journal of Statistical Physics 25, 25 (1981).
  40. R. Pathria and P. D. Beale, Statistical Mechanics, 4th ed. (Academic Press, 2022).
  41. K. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974).
  42. M. Suzuki, Prog. Theor. Phys. Vol. 37, 770 (1967).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com