Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimally-intrusive Navigation in Dense Crowds with Integrated Macro and Micro-level Dynamics (2312.17076v1)

Published 28 Dec 2023 in cs.RO

Abstract: In mobile robot navigation, despite advancements, the generation of optimal paths often disrupts pedestrian areas. To tackle this, we propose three key contributions to improve human-robot coexistence in shared spaces. Firstly, we have established a comprehensive framework to understand disturbances at individual and flow levels. Our framework provides specialized computational strategies for in-depth studies of human-robot interactions from both micro and macro perspectives. By employing novel penalty terms, namely Flow Disturbance Penalty (FDP) and Individual Disturbance Penalty (IDP), our framework facilitates a more nuanced assessment and analysis of the robot navigation's impact on pedestrians. Secondly, we introduce an innovative sampling-based navigation system that adeptly integrates a suite of safety measures with the predictability of robotic movements. This system not only accounts for traditional factors such as trajectory length and travel time but also actively incorporates pedestrian awareness. Our navigation system aims to minimize disturbances and promote harmonious coexistence by considering safety protocols, trajectory clarity, and pedestrian engagement. Lastly, we validate our algorithm's effectiveness and real-time performance through simulations and real-world tests, demonstrating its ability to navigate with minimal pedestrian disturbance in various environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. I. Tiddi, E. Bastianelli, E. Daga, M. d’Aquin, and E. Motta, “Robot–city interaction: Mapping the research landscape—a survey of the interactions between robots and modern cities,” International Journal of Social Robotics, vol. 12, 03 2019.
  2. E. Daga, M. d’Aquin, A. Adamou, and E. Motta, “Addressing exploitability of smart city data,” in 2016 IEEE International Smart Cities Conference (ISC2), 2016, pp. 1–6.
  3. T. Linder and K. O. Arras, “Multi-model hypothesis tracking of groups of people in rgb-d data,” in 17th International Conference on Information Fusion (FUSION), 2014, pp. 1–7.
  4. Y. Sun, L. Sun, and J. Liu, “Real-time and fast rgb-d based people detection and tracking for service robots,” in 2016 12th World Congress on Intelligent Control and Automation (WCICA), 2016, pp. 1514–1519.
  5. C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 6015–6022.
  6. P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation in dense human crowds: Statistical models and experimental studies of human–robot cooperation,” The International Journal of Robotics Research, vol. 34, no. 3, pp. 335–356, 2015.
  7. R. Bresson, J. Saraydaryan, J. Dugdale, and A. Spalanzani, “Socially compliant navigation in dense crowds,” in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 64–69.
  8. C. I. Mavrogiannis and R. A. Knepper, “Multi-agent path topology in support of socially competent navigation planning,” The International Journal of Robotics Research, vol. 38, no. 2-3, pp. 338–356, 2019.
  9. S. Poddar, C. Mavrogiannis, and S. S. Srinivasa, “From crowd motion prediction to robot navigation in crowds,” 2023.
  10. Y. Liu, Q. Yan, and A. Alahi, “Social nce: Contrastive learning of socially-aware motion representations,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 15 118–15 129.
  11. L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation through raw depth inputs with generative adversarial imitation learning,” 2018.
  12. S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe navigation for mobile robots with limited field-of-views in dynamic environments,” Autonomous Robots, vol. 32, pp. 267–283, 2012.
  13. S. Bouraine, T. Fraichard, O. Azouaoui, and H. Salhi, “Passively safe partial motion planning for mobile robots with limited field-of-views in unknown dynamic environments,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 3576–3582.
  14. S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking, and M. Althoff, “Provably safe motion of mobile robots in human environments,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 1351–1357.
  15. M. Sun, F. Baldini, P. Trautman, and T. Murphey, “Move beyond trajectories: Distribution space coupling for crowd navigation,” arXiv preprint arXiv:2106.13667, 2021.
  16. T. Zhou, E. Lyu, J. Wang, G. Cen, Z. Zha, S. Qi, and M. Q.-H. Meng, “Towards high efficient long-horizon planning with expert-guided motion-encoding tree search,” arXiv preprint arXiv:2309.15079, 2023.
  17. C. Dogbé, “On the numerical solutions of second order macroscopic models of pedestrian flows,” Computers & Mathematics with Applications, vol. 56, no. 7, pp. 1884–1898, 2008.
  18. B. Maury, A. Roudneff-Chupin, and F. Santambrogio, “A macroscopic crowd motion model of gradient flow type,” Mathematical Models and Methods in Applied Sciences, vol. 20, no. 10, pp. 1787–1821, 2010.
  19. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  20. J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Optimal reciprocal collision avoidance for multi-agent navigation,” in Proc. of the IEEE International Conference on Robotics and Automation, Anchorage (AK), USA, 2010.
  21. M. Prédhumeau, L. Mancheva, J. Dugdale, and A. Spalanzani, “An agent-based model to predict pedestrians trajectories with an autonomous vehicle in shared spaces,” in AAMAS 2021-20th International Conference on Autonomous Agents and Multiagent Systems, 2021, pp. 1–9.
  22. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable trajectories with generative adversarial networks,” 2018.
  23. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 961–971.
  24. B. Pang, T. Zhao, X. Xie, and Y. N. Wu, “Trajectory prediction with latent belief energy-based model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11 814–11 824.
  25. T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data,” 2021.
  26. C. Mavrogiannis, K. Balasubramanian, S. Poddar, A. Gandra, and S. S. Srinivasa, “Winding through: Crowd navigation via topological invariance,” 2022.
  27. J. Roh, C. Mavrogiannis, R. Madan, D. Fox, and S. S. Srinivasa, “Multimodal trajectory prediction via topological invariance for navigation at uncontrolled intersections,” 2020.
  28. C. I. Mavrogiannis, W. B. Thomason, and R. A. Knepper, “Social momentum: A framework for legible navigation in dynamic multi-agent environments,” in 2018 13th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2018, pp. 361–369.
  29. E. Tolstaya, R. Mahjourian, C. Downey, B. Varadarajan, B. Sapp, and D. Anguelov, “Identifying driver interactions via conditional behavior prediction,” 2021.
  30. T. Fan, D. Wang, W. Liu, and J. Pan, “Crowd-driven mapping, localization and planning,” 2021.
  31. R. Bresson, J. Saraydaryan, J. Dugdale, and A. Spalanzani, “Socially compliant navigation in dense crowds,” in 2019 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2019, pp. 64–69.
  32. Y. Che, A. M. Okamura, and D. Sadigh, “Efficient and trustworthy social navigation via explicit and implicit robot–human communication,” IEEE Transactions on Robotics, vol. 36, no. 3, pp. 692–707, 2020.
  33. R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager, “A real-time game theoretic planner for autonomous two-player drone racing,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1389–1403, 2020.
  34. M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game-theoretic planning for self-driving cars in multivehicle competitive scenarios,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1313–1325, 2021.
  35. N. Bellomo and C. Dogbe, “On the modelling crowd dynamics from scaling to hyperbolic macroscopic models,” Mathematical Models and Methods in Applied Sciences, vol. 18, no. supp01, pp. 1317–1345, 2008.
  36. J. Lin, T. Zhou, D. Zhu, J. Liu, and M. Q.-H. Meng, “Search-based online trajectory planning for car-like robots in highly dynamic environments,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 8151–8157.
  37. M. Seder and I. Petrovic, “Dynamic window based approach to mobile robot motion control in the presence of moving obstacles,” in Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 1986–1991.
  38. C. Fulgenzi, A. Spalanzani, C. Laugier, and C. Tay, “Risk based motion planning and navigation in uncertain dynamic environment,” 2010.
  39. C. Cao, P. Trautman, and S. Iba, “Dynamic channel: A planning framework for crowd navigation,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 5551–5557.
  40. M. Häselich, B. Jöbgen, N. Wojke, J. Hedrich, and D. Paulus, “Confidence-based pedestrian tracking in unstructured environments using 3d laser distance measurements,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4118–4123.
Citations (1)

Summary

We haven't generated a summary for this paper yet.