Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symbolic Models for Interconnected Impulsive Systems (2312.17006v1)

Published 28 Dec 2023 in eess.SY and cs.SY

Abstract: In this paper, we present a compositional methodology for constructing symbolic models of nonlinear interconnected impulsive systems. Our approach relies on the concept of "alternating simulation function" to establish a relationship between concrete subsystems and their symbolic models. Assuming some small-gain type conditions, we develop an alternating simulation function between the symbolic models of individual subsystems and those of the nonlinear interconnected impulsive systems. To construct symbolic models of nonlinear impulsive subsystems, we propose an approach that depends on incremental input-to-state stability and forward completeness properties. Finally, we demonstrate the advantages of our framework through a case study.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009.
  2. P. Tabuada, Verification and control of hybrid systems: a symbolic approach. Springer Science & Business Media, 2009.
  3. R. Lal and P. Prabhakar, “Compositional construction of bounded error over-approximations of acyclic interconnected continuous dynamical systems,” in Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design, pp. 1–5, 2019.
  4. A. Saoud, P. Jagtap, M. Zamani, and A. Girard, “Compositional abstraction-based synthesis for cascade discrete-time control systems,” IFAC-PapersOnLine, vol. 51, no. 16, pp. 13–18, 2018.
  5. M. Shahamat, J. Askari, A. Swikir, N. Noroozi, and M. Zamani, “Construction of continuous abstractions for discrete-time time-delay systems,” in 2020 59th IEEE Conference on Decision and Control (CDC), pp. 881–886, 2020.
  6. A. Swikir and M. Zamani, “Compositional synthesis of finite abstractions for networks of systems: A small-gain approach,” Automatica, vol. 107, pp. 551–561, 2019.
  7. M. Zamani and M. Arcak, “Compositional abstraction for networks of control systems: A dissipativity approach,” IEEE Transactions on Control of Network Systems, vol. 5, no. 3, pp. 1003–1015, 2017.
  8. A. Swikir and M. Zamani, “Compositional abstractions of interconnected discrete-time switched systems,” in the 18th Eur. Control Conf., pp. 1251–1256, 2019.
  9. A. Swikir and M. Zamani, “Compositional synthesis of symbolic models for networks of switched systems,” IEEE Control Systems Letters, vol. 3, no. 4, pp. 1056–1061, 2019.
  10. A. Swikir, N. Noroozi, and M. Zamani, “Compositional synthesis of symbolic models for infinite networks,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1868–1873, 2020. 21st IFAC World Congress.
  11. M. Sharifi, A. Swikir, N. Noroozi, and M. Zamani, “Compositional construction of abstractions for infinite networks of discrete-time switched systems,” Nonlinear Analysis: Hybrid Systems, vol. 44, p. 101173, 2022.
  12. M. Sharifi, A. Swikir, N. Noroozi, and M. Zamani, “Compositional construction of abstractions for infinite networks of switched systems,” in 2020 59th IEEE Conference on Decision and Control (CDC), pp. 476–481, 2020.
  13. S. Liu, N. Noroozi, and M. Zamani, “Symbolic models for infinite networks of control systems: A compositional approach,” Nonlinear Analysis: Hybrid Systems, vol. 43, p. 101097, 2021.
  14. N. Noroozi, A. Swikir, F. R. Wirth, and M. Zamani, “Compositional construction of abstractions via relaxed small-gain conditions part ii: discrete case,” in 2018 European Control Conference (ECC), pp. 1–4, 2018.
  15. A. Swikir, Compositional Synthesis of Symbolic Models for (In)Finite Networks of Cyber-Physical Systems. PhD thesis, Technische Universität München, 2020.
  16. A. Saoud, A. Girard, and L. Fribourg, “Contract-based design of symbolic controllers for safety in distributed multiperiodic sampled-data systems,” IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1055–1070, 2020.
  17. A. Saoud, A. Girard, and L. Fribourg, “Assume-guarantee contracts for continuous-time systems,” Automatica, vol. 134, p. 109910, 2021.
  18. A. Saoud, P. Jagtap, M. Zamani, and A. Girard, “Compositional abstraction-based synthesis for interconnected systems: An approximate composition approach,” IEEE Transactions on Control of Network Systems, vol. 8, no. 2, pp. 702–712, 2021.
  19. S. Belamfedel Alaoui, P. Jagtap, A. Saoud, et al., “Compositional approximately bisimilar abstractions of interconnected systems,” arXiv preprint arXiv:2211.08655, 2022.
  20. A. Swikir, A. Girard, and M. Zamani, “Symbolic models for a class of impulsive systems,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 247–252, 2020.
  21. G. Pola and P. Tabuada, “Symbolic models for nonlinear control systems: Alternating approximate bisimulations,” SIAM Journal on Control and Optimization, vol. 48, no. 2, pp. 719–733, 2009.
  22. P. Tabuada, Verification and control of hybrid systems: A Symbolic approach. Springer Publishing Company, Incorporated, 1st ed., 2009.
  23. A. Swikir, A. Girard, and M. Zamani, “From dissipativity theory to compositional synthesis of symbolic models,” in the 4th Indian Control Conf., pp. 30–35, 2018.
Citations (2)

Summary

We haven't generated a summary for this paper yet.