Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An alternative approach to large deviations for the almost-critical Erdős-Rényi random graph (2312.16941v1)

Published 28 Dec 2023 in math.PR

Abstract: We study the near-critical behavior of the sparse Erd\H{o}s-R\'enyi random graph $\mathcal{G}(n,p)$ on $n\gg1$ vertices, where the connection probability $p$ satisfies $np = 1+\theta(b_n2/n){1/3}$, with $n{3/10}\ll {b_n}\ll n{1/2}$, and $\theta\in\mathbb{R}$. To this end, we introduce an empirical measure that describes connected components of $\mathcal{G}(n,p)$ of mesoscopic size $\propto (nb_n){2/3}$, and we characterize its large deviation behavior. The proof hinges on detailed combinatorial estimates and optimization procedures. In particular, we give precise estimates for the probability that the graph has no connected component of mesoscopic size or larger. We argue that these are a stepping stone for the analysis of more general inhomogeneous random graphs. Our proof strategy gives new and accurate estimates of the probability that the sparse Erd\H{o}s-R\'enyi graph is connected.

Summary

We haven't generated a summary for this paper yet.