Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Sensor Placement for Multi-source Localization of Pathogens in Wastewater Networks (2312.16750v1)

Published 27 Dec 2023 in cs.SI, cs.CE, and physics.soc-ph

Abstract: Wastewater monitoring is an effective approach for the early detection of viral and bacterial disease outbreaks. It has recently been used to identify the presence of individuals infected with COVID-19. To monitor large communities and accurately localize buildings with infected individuals with a limited number of sensors, one must carefully choose the sampling locations in wastewater networks. We also have to account for concentration requirements on the collected wastewater samples to ensure reliable virus presence test results. We model this as a sensor placement problem. Although sensor placement for source localization arises in numerous problems, most approaches use application-specific heuristics and fail to consider multiple source scenarios. To address these limitations, we develop a novel approach that combines Bayesian networks and discrete optimization to efficiently identify informative sensor placements and accurately localize virus sources. Our approach also takes into account concentration requirements on wastewater samples during optimization. Our simulation experiments demonstrate the quality of our sensor placements and the accuracy of our source localization approach. Furthermore, we show the robustness of our approach to discrepancies between the virus outbreak model and the actual outbreak rates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. S. L. Priyadarsini, M. Suresh, and D. Huisingh, “What can we learn from previous pandemics to reduce the frequency of emerging infectious diseases like COVID-19?” Global Transitions, vol. 2, pp. 202–220, 2020.
  2. TED-Ed, “Will there be another pandemic in your lifetime?” Nov. 2022. [Online]. Available: https://www.youtube.com/watch?v=tMXjUWvJJto
  3. P. M. Choi, B. J. Tscharke, E. Donner, J. W. O’Brien, S. C. Grant, S. L. Kaserzon, R. Mackie, E. O’Malley, N. D. Crosbie, K. V. Thomas, and J. F. Mueller, “Wastewater-based epidemiology biomarkers: Past, present and future,” Trends in Analytical Chemistry, vol. 105, pp. 453–469, 2018.
  4. N. Sims and B. Kasprzyk-Hordern, “Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level,” Environment International, vol. 139, 2020.
  5. J. Mac Mahon, A. J. Criado Monleon, L. W. Gill, J. J. O’Sullivan, and W. G. Meijer, “Wastewater-based epidemiology (WBE) for SARS-CoV-2 - A review focussing on the significance of the sewer network using a Dublin city catchment case study,” Water Science & Technology, vol. 86, no. 6, pp. 1402–1425, Sep. 2022.
  6. B. Hughes, D. Duong, B. J. White, K. R. Wigginton, E. M. G. Chan, M. K. Wolfe, and A. B. Boehm, “Respiratory syncytial virus (RSV) RNA in wastewater settled solids reflects RSV clinical positivity rates,” Environmental Science & Technology Letters, vol. 9, no. 2, pp. 173–178, 2022.
  7. T. Luo, Z. Cao, Y. Wang, D. Zeng, and Q. Zhang, “Role of asymptomatic COVID-19 cases in viral transmission: Findings from a hierarchical community contact network model,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 2, pp. 576–585, 2022.
  8. J. Peccia, A. Zulli, D. E. Brackney, N. D. Grubaugh, E. H. Kaplan, A. Casanovas-Massana, A. I. Ko, A. A. Malik, D. Wang, M. Wang, J. L. Warren, D. M. Weinberger, W. Arnold, and S. B. Omer, “Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics,” Nature Biotechnology, vol. 38, no. 10, pp. 1164–1167, Oct 2020.
  9. D. A. Larsen and K. R. Wigginton, “Tracking COVID-19 with Wastewater,” Nature Biotechnology, vol. 38, no. 10, pp. 1151–1153, Oct 2020.
  10. S. Karthikeyan, A. Nguyen, D. McDonald, Y. Zong, N. Ronquillo, J. Ren, J. Zou, S. Farmer, G. Humphrey, D. Henderson, T. Javidi, K. Messer, C. Anderson, R. Schooley, N. K. Martin, and R. Knight, “Rapid, Large-Scale Wastewater Surveillance and Automated Reporting System Enable Early Detection of Nearly 85% of COVID-19 Cases on a University Campus,” mSystems, vol. 6, no. 4, pp. e00 793–21, 2021.
  11. Massachusetts Institute of Technology (MIT), “Testing wastewater to help detect Covid-19,” Oct. 2020. [Online]. Available: https://www.youtube.com/watch?v=ysZsx5wS2YM
  12. V. Kisand, P. Laas, K. Palmik-Das, K. Panksep, H. Tammert, L. Albreht, H. Allemann, L. Liepkalns, K. Vooro, C. Ritz, V. Hauryliuk, and T. Tenson, “Prediction of COVID-19 positive cases, a nation-wide SARS-CoV-2 wastewater-based epidemiology study,” Water Research, vol. 231, p. 119617, 2023.
  13. M. Wolken, T. Sun, C. McCall, R. Schneider, K. Caton, C. Hundley, L. Hopkins, K. Ensor, K. Domakonda, P. Kalvapalle, D. Persse, S. Williams, and L. B. Stadler, “Wastewater surveillance of SARS-CoV-2 and influenza in preK-12 schools shows school, community, and citywide infections,” Water Research, vol. 231, p. 119648, 2023.
  14. C. Gibas, K. Lambirth, N. Mittal, M. A. I. Juel, V. B. Barua, L. Roppolo Brazell, K. Hinton, J. Lontai, N. Stark, I. Young, C. Quach, M. Russ, J. Kauer, B. Nicolosi, D. Chen, S. Akella, W. Tang, J. Schlueter, and M. Munir, “Implementing Building-Level SARS-CoV-2 Wastewater Surveillance on a University Campus,” Science of The Total Environment, vol. 782, Mar. 2021.
  15. K. Villez, P. A. Vanrolleghem, and L. Corominas, “A general-purpose method for Pareto optimal placement of flow rate and concentration sensors in networked systems – With application to wastewater treatment plants,” Computers & Chemical Engineering, vol. 139, p. 106880, 2020.
  16. M. Nourinejad, O. Berman, and R. C. Larson, “Placing sensors in sewer networks: A system to pinpoint new cases of coronavirus,” PLoS One, vol. 16, no. 4, Apr. 2021.
  17. E. Calle, D. Martínez, R. Brugués-i-Pujolràs, M. Farreras, J. Saló-Grau, J. Pueyo-Ros, and L. Corominas, “Optimal selection of monitoring sites in cities for SARS-CoV-2 surveillance in sewage networks,” Environment International, vol. 157, p. 106768, 2021.
  18. E. Domokos, V. Sebestyén, V. Somogyi, A. J. Trájer, R. Gerencsér-Berta, B. Oláhné Horváth, E. G. Tóth, F. Jakab, G. Kemenesi, and J. Abonyi, “Identification of sampling points for the detection of SARS-CoV-2 in the sewage system,” Sustainable Cities and Society, vol. 76, 2022.
  19. W. Li, J. Han, Y. Li, F. Zhang, X. Zhou, and C. Yang, “Optimal sensor placement method for wastewater treatment plants based on discrete multi-objective state transition algorithm,” Journal of Environmental Management, vol. 307, p. 114491, 2022.
  20. S. Speziali, A. Marini, A. Vispa, F. Bianchi, M. Proietti, A. Garinei, L. Mattioli, L. Sani, E. Piccioni, and M. Marconi, “A Novel Approach to Face Early Pandemics Using QUBO Models,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), vol. 02, 2023, pp. 266–267.
  21. J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance, “Cost-effective outbreak detection in networks,” in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’07.   Association for Computing Machinery, 2007, p. 420–429.
  22. Y. Shen, D. Guo, F. Long, L. A. Mateos, H. Ding, Z. Xiu, R. B. Hellman, A. King, S. Chen, C. Zhang, and H. Tan, “Robots under COVID-19 pandemic: A comprehensive survey,” IEEE Access, vol. 9, pp. 1590–1615, 2021.
  23. X. V. Wang and L. Wang, “A literature survey of the robotic technologies during the COVID-19 pandemic,” Journal of Manufacturing Systems, vol. 60, pp. 823–836, 2021.
  24. D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the Spread of Influence through a Social Network,” in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’03.   Association for Computing Machinery, 2003, p. 137–146.
  25. J. Berry, W. E. Hart, C. A. Phillips, J. G. Uber, and J.-P. Watson, “Sensor Placement in Municipal Water Networks with Temporal Integer Programming Models,” Journal of Water Resources Planning and Management, vol. 132, no. 4, pp. 218–224, 2006.
  26. B. Spinelli, L. E. Celis, and P. Thiran, “A General Framework for Sensor Placement in Source Localization,” IEEE Transactions on Network Science and Engineering, vol. 6, no. 2, pp. 86–102, 2019.
  27. X. Jiang and G. L. Wallstrom, “A Bayesian Network for Outbreak Detection and Prediction,” in Proceedings of the 21st National Conference on Artificial Intelligence - Volume 2, ser. AAAI’06.   AAAI Press, 2006, p. 1155–1160.
  28. X. Jiang, D. Neill, and G. Cooper, “A Bayesian network model for spatial event surveillance,” International Journal of Approximate Reasoning, vol. 51, pp. 224–239, 2010.
  29. X. Fang, W. Yan, and W. Chen, “Sensor Placement for Underwater Source Localization With Fixed Distances,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 9, pp. 1379–1383, 2016.
  30. L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, and C. Maple, “A Survey of Localization in Wireless Sensor Network,” International Journal of Distributed Sensor Networks, vol. 8, no. 12, p. 962523, 2012.
  31. M. A. Jatoi, N. Kamel, A. S. Malik, I. Faye, and T. Begum, “A survey of methods used for source localization using EEG signals,” Biomedical Signal Processing and Control, vol. 11, pp. 42–52, 2014.
  32. H. Yin, Y. Lin, H. Zhang, R. Wu, and Z. Xu, “Identification of pollution sources in rivers using a hydrodynamic diffusion wave model and improved Bayesian-Markov chain Monte Carlo algorithm,” Frontiers of Environmental Science & Engineering, vol. 17, no. 7, p. 85, Jan 2023.
  33. M. Minoux, “Accelerated Greedy Algorithms for Maximizing Submodular Set Functions,” in Optimization Techniques, J. Stoer, Ed.   Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, pp. 234–243.
  34. P. Foladori, F. Cutrupi, N. Segata, S. Manara, F. Pinto, F. Malpei, L. Bruni, and G. La Rosa, “SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review,” The Science of the Total Environment, vol. 743, pp. 823–836, Nov 2020.
  35. K. Wei, R. Iyer, and J. Bilmes, “Fast Multi-Stage Submodular Maximization,” in Proceedings of the 31st International Conference on Machine Learning - Volume 32, ser. ICML’14.   JMLR, 2014, p. 1494–1502.
  36. B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause, “Lazier than Lazy Greedy,” in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, ser. AAAI’15.   AAAI Press, 2015, p. 1812–1818.
  37. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions-I,” Mathematical Programming, vol. 14, no. 1, pp. 265–294, Dec 1978.

Summary

We haven't generated a summary for this paper yet.