Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

Temperature-dependent photoluminescence dynamics of CsPbBr$_3$ and CsPb(Cl,Br)$_3$ perovskite nanocrystals in a glass matrix (2312.16685v2)

Published 27 Dec 2023 in cond-mat.mtrl-sci and cond-mat.mes-hall

Abstract: Lead halide perovskite nanocrystals (NCs) in a glass matrix combine excellent optical properties and stability against environment. The spectral and temporal characteristics of photoluminescence from CsPbBr$_3$ and CsPb(Cl,Br)$_3$ nanocrystals (NCs) in a fluorophosphate glass matrix are measured in a temperature range from 6 to 270 K in order to reveal factors that determine their quantum yield and recombination dynamics. At low temperatures, the recombination dynamics is characterized by three decay components with time scales on the order of 1 ns, 10 ns, and 1 $\mu$s. The relative contributions of the corresponding processes and their characteristic times are strongly temperature dependent. The emission intensity decreases with growing temperature. This effect is stronger in smaller NCs, which highlights the role of surface states. These experimental results are discussed on the basis of a model taking into account the NC energy structure and the presence of electron and hole surface trap states. The photoluminescence dynamics at low temperatures is dominated by charge-carrier radiative recombination and relaxation to shallow traps. At temperatures exceeding 100 K, the dynamics is affected by carrier activation to the excited states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. H. L. Wells, Über die Cäsium‐ und Kalium‐Bleihalogenide, Zeitschrift für anorganische Chemie 3, 195 (1893).
  2. C. K. Moller, Crystal Structure and Photoconductivity of Cæsium Plumbohalides, Nature 182, 1436 (1958).
  3. M. A. Green, A. Ho-Baillie, and H. J. Snaith, The emergence of perovskite solar cells, Nature Photonics 8, 506 (2014).
  4. A. Vinattieri and G. Giorgi, eds., Halide Perovskites for Photonic (AIP Publishing, Melville, New York, 2021).
  5. Z. V. Vardeny and M. C. Beard, eds., Hybrid Organic Inorganic Perovskites: Physical Properties and Applications (World Scientific, 2022).
  6. L. D. Landau and E. M. Lifshits, Quantum Mechanics: NonRelativistic Theory (Butterworth-Heinemann, Oxford, 1991).
  7. S. Flügge, Practical Quantum Mechanics (Springer Science and Business Media, New York, 2012).
  8. W. Elsasser, Atomare Wellenfunktion im Impulsraum, Zeitschrift fur Physik 81, 332 (1933).
  9. S. Savchenko, A. Vokhmintsev, and I. Weinstein, Activation energy distribution in thermal quenching of exciton and defect-related photoluminescence of InP/ZnS quantum dots, Journal of Luminescence 242, 118550 (2022).
  10. S. Rudin, T. L. Reinecke, and B. Segall, Temperature-dependent exciton linewidths in semiconductors, Physical Review B 42, 11218 (1990).
  11. M. Bayer and A. Forchel, Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots, Physical Review B 65, 041308(R) (2002).
  12. E. A. Muljarov and R. Zimmermann, Exciton Dephasing in Quantum Dots due to LO-Phonon Coupling: An Exactly Solvable Model, Physical Review Letters 98, 187401 (2007).
  13. C. Wolf and T.-W. Lee, Exciton and lattice dynamics in low-temperature processable CsPbBr3 thin-films, Materials Today Energy 7, 199 (2018).
  14. G. E. Cragg and A. L. Efros, Suppression of Auger Processes in Confined Structures, Nano Letters 10, 313 (2010).
  15. V. V. Belykh and M. V. Kochiev, Heating by exciton and biexciton recombination in GaAs/AlGaAs quantum wells, Physical Review B 92, 045307 (2015).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com